We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
-1
92
3
avatar+283 

1. The general form of an parabola is 3x^2 + 24x − 2y + 52 = 0 .

    What is the standard form of the parabola?

    Enter your answer by filling in the boxes. Enter any fractions in simplest form.

 

2.The directrix of a parabola is x = 4. Its focus is (2,6) .

   What is the standard form of the parabola?

   Enter your answer by filling in the boxes.

 Nov 14, 2019
 #1
avatar+19773 
+2

Here is ONE standard form

 

3x^2+24x-2y+52    = 0       divide by 3

x^2 + 8x -2/3 y + 52/3         complet 'x' square

(x+4)^2    = 16    +2/3 y -52/3

    (x+4)^2 = 2/3 y -4/3

   (x+4)^2 =  2/3 (y - 2)

 Nov 14, 2019
 #2
avatar+105411 
+2

3x^2 + 24x  - 2y + 52  =  0       rearrange as

 

2y  =  3x^2 + 24x  + 52           divide both sides by  2

 

y = (3/2)x^2 + 12x + 26          factor out the (3/2)

 

y  =  (3/2)  [ x^2  + 8x + 52/3 ]        

 

Complete the square on x........take 1/2  of 8  = 4  ......square it   =  16.....add and subtract within the parentheses

 

y = (3/2) [ x^2 + 8x + 16 + 52/3  - 16 ]          

 

Factor the first three terms in the parentheses  and simplify the last two terms

 

y =  (3/2) [ (x + 4)^2  + 4/3 ]       

 

Distribute the (3/2)  over the terms in the parentheses

 

y  = (3/2) (x + 4)^2  + 2    or  

 

(y - 2)  = (3/2) (x + 4)^2

 

 

cool cool cool

 Nov 14, 2019
 #3
avatar+105411 
+2

Second one

 

The vertex will be at   ([4 + 2] / 2, 6 )  =   ( 3, 6) =  (h, k)

 

This parabola opens to the left   because the directrix is to the right of the focus

 

The form is

 

-4a ( x - h)  = (y - k)^2

 

a = the distance between the vertex and focus  =  1

 

So  we have that

 

-4 (1) (x - 3)  = (y - 6)^2

 

-4 (x - 3)  = (y - 6)^2

 

Here's the graph  :  https://www.desmos.com/calculator/9wy9pmdttx

 

 

 

cool cool cool

 Nov 14, 2019

1 Online Users

avatar