+0  
 
0
56
2
avatar

Find constants $A$ and $B$ such that \[\frac{x + 7}{x^2 - x - 2} = \frac{A}{x - 2} + \frac{B}{x + 1}\] for all $x$ such that $x\neq -1$ and $x\neq 2$. Give your answer as the ordered pair $(A,B)$.

Guest Aug 20, 2018
 #1
avatar+45 
+2

From the equation, we get x+7=Ax+A+Bx-2B.

A+B=1 and A-2B=7

Solving the equations will give us (A,B)=(3,-2).

Alecdanub  Aug 20, 2018
 #2
avatar+20009 
+3

Find constants $A$ and $B$ such that \[\frac{x + 7}{x^2 - x - 2} = \frac{A}{x - 2} + \frac{B}{x + 1}\]
for all $x$ such that $x\neq -1$ and $x\neq 2$.
Give your answer as the ordered pair $(A,B)$.

 

 

\(\text{Let $x^2 - x - 2 = (x-2)(x+1)$}\)

\(\begin{array}{|rcll|} \hline \dfrac{x + 7}{x^2 - x - 2} &=& \dfrac{A}{x - 2} + \dfrac{B}{x + 1} \\\\ \dfrac{x + 7}{(x-2)(x+1)} &=& \dfrac{A}{x - 2} + \dfrac{B}{x + 1} \quad & | \quad \cdot (x-2)(x+1) \\\\ x + 7 &=& \dfrac{A(x-2)(x+1)}{x - 2} + \dfrac{B(x-2)(x+1)}{x + 1} \quad & | \quad x\ne2,\ x\ne -1 \\\\ x + 7 &=& A (x+1) + B(x-2) \\ \\ \hline x=-1: \quad -1 + 7 &=& A (-1+1) + B(-1-2) \\ \quad 6 &=& 0 -3B \\ \quad 6 &=& -3B \\ \quad -3B &=& 6 \quad | \quad :(-3) \\ \quad B &=& \frac{6}{-3} \\ \quad \mathbf{B} & \mathbf{=} & \mathbf{-2} \\ \hline x=2: \quad 2 + 7 &=& A (2+1) + B(2-2) \\ \quad 9 &=& 3A +0 \\ \quad 9 &=& 3A \\ \quad 3A &=& 9 \quad | \quad :3 \\ \quad A &=& \frac{9}{3} \\ \quad \mathbf{A} & \mathbf{=} & \mathbf{3} \\ \hline \end{array} \)

 

Answer \((3,-2)\)

 

laugh

heureka  Aug 20, 2018

16 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.