+0

0
325
2

Find constants $A$ and $B$ such that $\frac{x + 7}{x^2 - x - 2} = \frac{A}{x - 2} + \frac{B}{x + 1}$ for all $x$ such that $x\neq -1$ and $x\neq 2$. Give your answer as the ordered pair $(A,B)$.

Aug 20, 2018

#1
+44
+2

From the equation, we get x+7=Ax+A+Bx-2B.

A+B=1 and A-2B=7

Solving the equations will give us (A,B)=(3,-2).

Aug 20, 2018
#2
+24949
+4

Find constants $A$ and $B$ such that $\frac{x + 7}{x^2 - x - 2} = \frac{A}{x - 2} + \frac{B}{x + 1}$
for all $x$ such that $x\neq -1$ and $x\neq 2$.
Give your answer as the ordered pair $(A,B)$.

$$\text{Let x^2 - x - 2 = (x-2)(x+1)}$$

$$\begin{array}{|rcll|} \hline \dfrac{x + 7}{x^2 - x - 2} &=& \dfrac{A}{x - 2} + \dfrac{B}{x + 1} \\\\ \dfrac{x + 7}{(x-2)(x+1)} &=& \dfrac{A}{x - 2} + \dfrac{B}{x + 1} \quad & | \quad \cdot (x-2)(x+1) \\\\ x + 7 &=& \dfrac{A(x-2)(x+1)}{x - 2} + \dfrac{B(x-2)(x+1)}{x + 1} \quad & | \quad x\ne2,\ x\ne -1 \\\\ x + 7 &=& A (x+1) + B(x-2) \\ \\ \hline x=-1: \quad -1 + 7 &=& A (-1+1) + B(-1-2) \\ \quad 6 &=& 0 -3B \\ \quad 6 &=& -3B \\ \quad -3B &=& 6 \quad | \quad :(-3) \\ \quad B &=& \frac{6}{-3} \\ \quad \mathbf{B} & \mathbf{=} & \mathbf{-2} \\ \hline x=2: \quad 2 + 7 &=& A (2+1) + B(2-2) \\ \quad 9 &=& 3A +0 \\ \quad 9 &=& 3A \\ \quad 3A &=& 9 \quad | \quad :3 \\ \quad A &=& \frac{9}{3} \\ \quad \mathbf{A} & \mathbf{=} & \mathbf{3} \\ \hline \end{array}$$

Answer $$(3,-2)$$

Aug 20, 2018