+0  
 
0
87
5
avatar

\( Let $x$ and $y$ be real numbers whose absolute values are different and that satisfy \begin{align*} x^3 &= 20x + 7y \\ y^3 &= 7x + 20y \end{align*} Find $xy.$\)\( \[\cfrac{1}{1 + \cfrac{1}{2 + \cfrac{1}{1 + \cfrac{1}{2 + \dotsb}}}}\]\)1.

 

\( $a^3 + \dfrac{1}{a^3}$ if $a+\dfrac{1}{a} = 6$\)2.

 

 

 

ANNNNNNDDDDDD!

\( \begin{align*} x^3 &= 20x + 7y \\ y^3 &= 7x + 20y \end{align*}\)Find $xy$

Guest Jun 8, 2017
Sort: 

5+0 Answers

 #1
avatar
0

Ignore that text at the top :)

Guest Jun 8, 2017
 #4
avatar+318 
0

But why did you even put it?

AsadRehman  Jun 9, 2017
 #2
avatar+75298 
+1

 

 

a^3  +  1/a^3    if    a + 1/a  = 6

 

Note:  if  a + 1/a   = 6   then

 

(a + 1/a)^2  = 36

a^2 + 2 + 1/a^2  = 36

a^2 + 1/a^2  =  34

 

Factor  a^3  +  1/a^3   as

 

(a +  1/a) ( a^2 - 1 + 1/a^2 )  =

 

( a + 1/a) ( [a^2 + 1/a^2] - 1)  =

(6) ( [34] - 1)  =

(6) (33)  =

198

 

 

cool cool cool

CPhill  Jun 8, 2017
 #3
avatar+75298 
+1

x^3  = 20x + 7y   

y^3  = 7x + 20y

 

Subtract the two equations

x^3  - y^3  = 13x - 13y

(x-y) (x^2 + xy + y^2)  = 13 (x - y)    divide both sides by ( x - y)

x^2 +  xy + y ^2   =  13  →  x^2 + y^2  =  13 - xy   (1)

 

Add the two equations

x^3 + y^3  =  27x + 27y

(x + y) ( x^2  - xy + y^2)  = 27 (x + y)   divide both sides by (x + y)

x^2 - xy + y^2  =  27  →  x^2 + y^2  =  27 + xy    (2)

 

Then.....setting (1)  and (2)   equal, we have that

 

13 - xy  =  27 + xy

 

2xy  = -14

 

xy  =  -7

 

[ Note....other solutions  are possible...for instance  the trivial solution of (x, y) = (0, 0)  produces xy = 0 ]

 

 

 

cool cool cool

CPhill  Jun 8, 2017
 #5
avatar+6765 
+1

\(\because x^3=20x+7y\text{ and }y^3=7x+20y\\ \therefore x^3-y^3=(x-y)(x^2+xy+y^2)=13x-13y\\ x^2+xy+y^2 = 13\\ x^3+y^3 =(x+y)(x^2-xy+y^2)=27(x+y)\\ x^2-xy+y^2=27\\ (x^2+xy+y^2)-(x^2-xy+y^2)=-14\\ xy = -7\)

MaxWong  Jun 9, 2017
edited by MaxWong  Jun 9, 2017

16 Online Users

avatar
avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details