+0  
 
+1
335
2
avatar

A rectangle is called ``cool'' if the number of square units in its area is equal to twice the number of units in its perimeter. A cool rectangle also must have integer side lengths. What is the sum of all the different possible areas of cool rectangles?

Guest Jan 17, 2018
 #1
avatar
0

Area = L x W

Perimeter =2[L + W]

L x W = 4L + 4W

There are 5 pairs of solutions:

L= 5 and W=20 =5 x 20 =100

L= 6 and W =12 =6 x 12 =72

L =8 and W = 8 = 8 x 8 = 64

L = 12 and W = 6 = 12 x 6 =72

L=20 and W = 5 = 20 x 5 =100

100+72+64+72 + 100 = 408 total sums of the areas.

Guest Jan 17, 2018
 #2
avatar+93015 
0

Let the  area  =  L * W    and the perimeter is  2(L + W )

 

So

 

Area Units  =  Twice Perimeter Units

 

 (L * W)  =   2 [ 2 ( L + W)]

 

L * W   =  4L  + 4W

 

L * W - 4L  =  4W

 

L (W - 4)  =  4W   ⇒     W  >  4

 

L  =  [ 4W ]  /  ( W  - 4)

 

Possible Values of  W  and  L

 

W          L            Ratio  of  [4W ] / (  W  - 4)  =    L

5          20                       20

6          12                       12

8           8                          8

12         6                          6

20         5                          5

 

Note that  the  last two dimensions are exactly the same as the first two...it just depends on the orientation of the rectangle

 

Note that   as  W   ⇒  infinity,   the ratio of  [4W] /  (W - 4)  ⇒ 4   but is always  > 4

 

So.....   no other integer values are possible  for  L

 

So.....the  possible dimensions are :

 

5, 20      6,12     and 8,8     

 

So....the sum of the possible areas is

 

5*20  +  6*12  +  8*8  =

 

100  +  72  +  64  =

 

100  +  136   = 

 

236

 

 

cool cool cool                  

CPhill  Jan 18, 2018

35 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.