We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
169
2
avatar

There are two points, A and B.

 

The point A is (1,1) and point B is (5,6)

 

Point P is along the line segment of AB, and it makes a ratio of AP to BP to 1:2. 

What is point P?

Round to tenth decimal

 

Please tell me what formula you used to get this, really confused. 

 Feb 12, 2019

Best Answer 

 #1
avatar+19811 
+2

Point p is   1/3 of the way from AP to BP     this will nake the ratio   AP:BP  1:2     (1+2) =3

 

Let's find x coordinate first    from 1    to    5   is 4 units    we need   1/3      4 x 1/3 = 4/3      add this to A

1 + 4 /3 =   7/3  = x

 

Now for y =   1 to 6 is 5     5 x 1/3 = 5/3    add this to  A

1+5/3 = 8/3 = y

 

7/3, 8/3   = p = (2.3,2.7)     rounded

 Feb 12, 2019
edited by ElectricPavlov  Feb 12, 2019
 #1
avatar+19811 
+2
Best Answer

Point p is   1/3 of the way from AP to BP     this will nake the ratio   AP:BP  1:2     (1+2) =3

 

Let's find x coordinate first    from 1    to    5   is 4 units    we need   1/3      4 x 1/3 = 4/3      add this to A

1 + 4 /3 =   7/3  = x

 

Now for y =   1 to 6 is 5     5 x 1/3 = 5/3    add this to  A

1+5/3 = 8/3 = y

 

7/3, 8/3   = p = (2.3,2.7)     rounded

ElectricPavlov Feb 12, 2019
edited by ElectricPavlov  Feb 12, 2019
 #2
avatar+23301 
+5

There are two points, A and B.

The point A is (1,1) and point B is (5,6)

 

Point P is along the line segment of AB, and it makes a ratio of AP to BP to 1:2. 

What is point P?

Round to tenth decimal

 

\(\begin{array}{|rcll|} \hline \vec{P} &=& \vec{A}+ \lambda \left( \vec{B}-\vec{A} \right) \quad | \quad \lambda = \dfrac{1}{1+2} = \dfrac{1}{3} \\\\ \vec{P} &=& \vec{A}+ \dfrac{1}{3}\left( \vec{B}-\vec{A} \right) \quad | \quad \vec{A}=\dbinom{1}{1},\ \vec{B}=\dbinom{5}{6} \\\\ \vec{P} &=& \dbinom{1}{1}+ \dfrac{1}{3}\left( \dbinom{5}{6}-\dbinom{1}{1} \right) \\\\ \vec{P} &=& \dbinom{1}{1}+ \dfrac{1}{3} \dbinom{5-1}{6-1} \\\\ \vec{P} &=& \dbinom{1}{1}+ \dfrac{1}{3} \dbinom{4}{5} \\\\ \vec{P} &=& \dbinom{1+\frac{4}{3}}{1+\frac{5}{3}} \\\\ \vec{P} &=& \dbinom{ \frac{7}{3}}{ \frac{8}{3}} \\\\ \mathbf{\vec{P}} & \mathbf{=} & \mathbf{\dbinom{2.3}{2.7}} \\ \hline \end{array}\)

 

P = (2.3, 2.7)

 

laugh

 Feb 13, 2019

25 Online Users

avatar
avatar