We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.

+0

# Please help!

0
489
1

If a ship's path is mapped on a coordinate grid, it follows a straight-line path of slope 4 and passes through point (1, 2).

Part A: Write the equation of the ship’s path in slope-intercept form. (2 points)

Part B: A second ship follows a straight line, with the equation x + 4y − 20 = 0. Are these two ships sailing perpendicular to each other? Justify your answer. (2 points)

Mar 7, 2018

### 1+0 Answers

#1
+8394
+1

Part A:

We want the equation of the line with a slope of  4  that passes through the point  (1, 2)

We know a point  (1, 2)  and we know the slope  4

So we can write the equation in point-slope form.

y - 2   =   4(x - 1)            To get this into slope-intercept form, distribute the  4 .

y - 2   =   4x - 4              Add  2  to both sides.

y  =  4x - 2

Part B:

Is the line   x + 4y - 20  =  0   perpendicular to the line  y  =  4x - 2   ?

The slope of the line   y  =  4x - 2   is  4.

To find the slope of the line  x + 4y - 20  =  0  , let's get the equation into slope-intercept form.

x + 4y - 20  =  0       Add  20  to both sides.

x + 4y  =  20            Subtract  x  from both sides.

4y   =   -x + 20         Divide both sides by  4 .

y   =   -$$\frac14$$x + 5          Now we can see that the slope of this line is  -$$\frac14$$ .

Since   -$$\frac14$$   is the negative reciprocal of  4  , these lines are perpendicular.

Yes, the two ships are sailing perpendicular to each other.

Mar 7, 2018