We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website.
Please click on "Accept cookies" if you agree to the setting of cookies. Cookies that do not require consent remain unaffected by this, see
cookie policy and privacy policy.
DECLINE COOKIES

Eleanor is making chocolate chip cookies for her friends. If she divides the cookies equally among \(11\) of her friends, she'll have \(4\) cookies left over. If she divides the cookies equally among \(7\) of her friends, she'll have \(1\) cookie left over. Assuming that Eleanor made fewer than \(100\) cookies, what is the sum of the possible numbers of cookies that she could have made?

Eleanor is making chocolate chip cookies for her friends. If she divides the cookies equally among $11$ of her friends, she'll have $4$ cookies left over. If she divides the cookies equally among $7$ of her friends, she'll have $1$ cookie left over. Assuming that Eleanor made fewer than $100$ cookies, what is the sum of the possible numbers of cookies that she could have made?

So I got 15 as one solution but that was by process of elimination. Is there a faster way?

Guest Dec 22, 2018

#1**+2 **

Best Answer

I would take into consideration the LCM of [7, 11] =77

So, 77n + 15, where n =0, 1, 2, 3.......etc.

Guest Dec 22, 2018

#2**0 **

Let's name X as the number of cookies she has.

Y is the number of cookies she gives to each of her 11 friends, and Z us the number of cookies she gives to each of her 7 friends.

We have X = 11Y + 4 and X = 7Z + 1, and by combining the equations, we have 11Y + 4 = 7Z + 1. Subtracting 4 on both sides, we have 11Y = 7Z - 3, and by dividing both sides by 11, we have \(Y = \dfrac{7Z-3}{11}\). Follow through with the equation.

PartialMathematician Dec 22, 2018