We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
107
3
avatar

hello! Can someone please solve this

using trig? I received some hints: SQR=SQB-RQB , Use the tan() angle subtraction formula on both angles, you’ll get equivalent equations  both of them should involve h

 Mar 1, 2019

Best Answer 

 #1
avatar+22539 
+2

Two pedestrians standing 10 feet away and 40 feet away from the base of a billboard structure
have equivalent views of the billboard,
meaning that the angles marked in the diagram are congruent.
If the billboard is 9 feet tall, what is its height h off the ground?
hello! Can someone please solve this

\(\text{Let $\angle SPR = \angle SQR = \alpha $ } \\ \text{Let $\angle RPQ = \beta $ } \\ \text{Let $\angle RQB = \gamma $ } \)

\(\begin{array}{|lrcll|} \hline 1. & \tan(\beta) &=& \dfrac{h}{40} \\ & \beta &=& \arctan\left(\dfrac{h}{40}\right) \\ \hline 2. &\tan(\gamma) &=& \dfrac{h}{10} \\ & \gamma &=& \arctan\left(\dfrac{h}{10}\right) \\ \hline \end{array} \\ \begin{array}{|lrcll|} \hline 3. & \tan(\alpha+\beta) &=& \dfrac{9+h}{40} \quad | \quad \beta = \arctan\left(\dfrac{h}{40}\right) \\ & \tan\left(\alpha+\arctan\left(\dfrac{h}{40}\right)\right) &=& \dfrac{9+h}{40} \\ & \alpha+\arctan\left(\dfrac{h}{40}\right) &=& \arctan\left(\dfrac{9+h}{40}\right) \\ & \alpha &=& \arctan\left(\dfrac{9+h}{40}\right)- \arctan\left(\dfrac{h}{40}\right) \\ \hline 4. & \tan(\alpha+\gamma)&=& \dfrac{9+h}{10} \quad | \quad \gamma = \arctan\left(\dfrac{h}{10}\right) \\ & \tan\left(\alpha+\arctan\left(\dfrac{h}{10}\right)\right)&=& \dfrac{9+h}{10} \\ & \alpha+\arctan\left(\dfrac{h}{10}\right)&=& \arctan\left(\dfrac{9+h}{10}\right) \\ & \alpha&=& \arctan\left(\dfrac{9+h}{10}\right)-\arctan\left(\dfrac{h}{10}\right) \\ \hline \end{array} \)

\(\begin{array}{|lrcll|} \hline \text{Formula: } \arctan(x)-\arctan(y) = \arctan\left( \dfrac{x-y}{1+xy} \right) \\ \hline \end{array} \\ \begin{array}{|rcll|} \hline \alpha = \arctan\left(\dfrac{9+h}{40}\right)- \arctan\left(\dfrac{h}{40}\right) &=& \arctan\left(\dfrac{9+h}{10}\right)-\arctan\left(\dfrac{h}{10}\right) \\ \arctan\left(\dfrac{9+h}{40}\right)- \arctan\left(\dfrac{h}{40}\right) &=& \arctan\left(\dfrac{9+h}{10}\right)-\arctan\left(\dfrac{h}{10}\right) \\ \arctan\left( \dfrac{ \dfrac{(9+h)}{40}-\dfrac{h}{40} } { 1+ \dfrac{(9+h)}{40}\dfrac{h}{40} } \right) &=& \arctan\left( \dfrac{ \dfrac{(9+h)}{10}-\dfrac{h}{10} } { 1+ \dfrac{(9+h)}{10}\dfrac{h}{10} } \right) \\ \dfrac{ \dfrac{9}{40} } { 1+ \dfrac{(9+h)}{40}\dfrac{h}{40} } &=& \dfrac{ \dfrac{9}{10} } { 1+ \dfrac{(9+h)}{10}\dfrac{h}{10} } \\\\ \dfrac{9}{40} \left( 1+ \dfrac{(9+h)}{10}\dfrac{h}{10} \right) &=& \dfrac{9}{10} \left( 1+ \dfrac{(9+h)}{40}\dfrac{h}{40} \right) \\\\ 1+ \dfrac{(9+h)}{10}\dfrac{h}{10} &=& 4 \left( 1+ \dfrac{(9+h)}{40}\dfrac{h}{40} \right) \\ \dfrac{100+(9+h)h}{100} &=& 4\left( \dfrac{1600+(9+h)h}{1600} \right) \\ \dfrac{100+(9+h)h}{100} &=& \dfrac{1600+(9+h)h}{400} \\ 4\left( 100+(9+h)h \right) &=& 1600+(9+h)h \\ 400+4(9+h)h &=& 1600+(9+h)h \\ 400 +36h+4h^2 &=& 1600+9h+h^2 \\ 3h^2 +27h-1200 &=& 0 \quad | \quad : 3 \\ h^2 +9h -400 &=& 0 \\ h &=& \dfrac{-9\pm \sqrt{81-4\cdot(-400)} }{2} \\ h &=& \dfrac{-9\pm \sqrt{1681} }{2} \\ h &=& \dfrac{-9\pm 41 }{2} \\ h &=& \dfrac{-9{\color{red}\mathbf{+}} 41 }{2} \quad | \quad h>0!\\ \mathbf{h} &\mathbf{=}& \mathbf{16} \\ \hline \end{array}\)

 

 

laugh

 Mar 1, 2019
 #1
avatar+22539 
+2
Best Answer

Two pedestrians standing 10 feet away and 40 feet away from the base of a billboard structure
have equivalent views of the billboard,
meaning that the angles marked in the diagram are congruent.
If the billboard is 9 feet tall, what is its height h off the ground?
hello! Can someone please solve this

\(\text{Let $\angle SPR = \angle SQR = \alpha $ } \\ \text{Let $\angle RPQ = \beta $ } \\ \text{Let $\angle RQB = \gamma $ } \)

\(\begin{array}{|lrcll|} \hline 1. & \tan(\beta) &=& \dfrac{h}{40} \\ & \beta &=& \arctan\left(\dfrac{h}{40}\right) \\ \hline 2. &\tan(\gamma) &=& \dfrac{h}{10} \\ & \gamma &=& \arctan\left(\dfrac{h}{10}\right) \\ \hline \end{array} \\ \begin{array}{|lrcll|} \hline 3. & \tan(\alpha+\beta) &=& \dfrac{9+h}{40} \quad | \quad \beta = \arctan\left(\dfrac{h}{40}\right) \\ & \tan\left(\alpha+\arctan\left(\dfrac{h}{40}\right)\right) &=& \dfrac{9+h}{40} \\ & \alpha+\arctan\left(\dfrac{h}{40}\right) &=& \arctan\left(\dfrac{9+h}{40}\right) \\ & \alpha &=& \arctan\left(\dfrac{9+h}{40}\right)- \arctan\left(\dfrac{h}{40}\right) \\ \hline 4. & \tan(\alpha+\gamma)&=& \dfrac{9+h}{10} \quad | \quad \gamma = \arctan\left(\dfrac{h}{10}\right) \\ & \tan\left(\alpha+\arctan\left(\dfrac{h}{10}\right)\right)&=& \dfrac{9+h}{10} \\ & \alpha+\arctan\left(\dfrac{h}{10}\right)&=& \arctan\left(\dfrac{9+h}{10}\right) \\ & \alpha&=& \arctan\left(\dfrac{9+h}{10}\right)-\arctan\left(\dfrac{h}{10}\right) \\ \hline \end{array} \)

\(\begin{array}{|lrcll|} \hline \text{Formula: } \arctan(x)-\arctan(y) = \arctan\left( \dfrac{x-y}{1+xy} \right) \\ \hline \end{array} \\ \begin{array}{|rcll|} \hline \alpha = \arctan\left(\dfrac{9+h}{40}\right)- \arctan\left(\dfrac{h}{40}\right) &=& \arctan\left(\dfrac{9+h}{10}\right)-\arctan\left(\dfrac{h}{10}\right) \\ \arctan\left(\dfrac{9+h}{40}\right)- \arctan\left(\dfrac{h}{40}\right) &=& \arctan\left(\dfrac{9+h}{10}\right)-\arctan\left(\dfrac{h}{10}\right) \\ \arctan\left( \dfrac{ \dfrac{(9+h)}{40}-\dfrac{h}{40} } { 1+ \dfrac{(9+h)}{40}\dfrac{h}{40} } \right) &=& \arctan\left( \dfrac{ \dfrac{(9+h)}{10}-\dfrac{h}{10} } { 1+ \dfrac{(9+h)}{10}\dfrac{h}{10} } \right) \\ \dfrac{ \dfrac{9}{40} } { 1+ \dfrac{(9+h)}{40}\dfrac{h}{40} } &=& \dfrac{ \dfrac{9}{10} } { 1+ \dfrac{(9+h)}{10}\dfrac{h}{10} } \\\\ \dfrac{9}{40} \left( 1+ \dfrac{(9+h)}{10}\dfrac{h}{10} \right) &=& \dfrac{9}{10} \left( 1+ \dfrac{(9+h)}{40}\dfrac{h}{40} \right) \\\\ 1+ \dfrac{(9+h)}{10}\dfrac{h}{10} &=& 4 \left( 1+ \dfrac{(9+h)}{40}\dfrac{h}{40} \right) \\ \dfrac{100+(9+h)h}{100} &=& 4\left( \dfrac{1600+(9+h)h}{1600} \right) \\ \dfrac{100+(9+h)h}{100} &=& \dfrac{1600+(9+h)h}{400} \\ 4\left( 100+(9+h)h \right) &=& 1600+(9+h)h \\ 400+4(9+h)h &=& 1600+(9+h)h \\ 400 +36h+4h^2 &=& 1600+9h+h^2 \\ 3h^2 +27h-1200 &=& 0 \quad | \quad : 3 \\ h^2 +9h -400 &=& 0 \\ h &=& \dfrac{-9\pm \sqrt{81-4\cdot(-400)} }{2} \\ h &=& \dfrac{-9\pm \sqrt{1681} }{2} \\ h &=& \dfrac{-9\pm 41 }{2} \\ h &=& \dfrac{-9{\color{red}\mathbf{+}} 41 }{2} \quad | \quad h>0!\\ \mathbf{h} &\mathbf{=}& \mathbf{16} \\ \hline \end{array}\)

 

 

laugh

heureka Mar 1, 2019
 #2
avatar+101856 
+3

Very nice, Heureka   !!!!!

 

 

cool cool cool

CPhill  Mar 1, 2019
 #3
avatar+22539 
+1

Thank you, CPhill !

 

laugh

heureka  Mar 4, 2019

7 Online Users