If \(5^x=100\), what is the value of \(5^{x+2}\)?
Note that \(5^{x+2} = 5^x \times 5^2\)
We know that \(5^x = 100\), so \(5^{x+2} = 100 \times 5^2 = \text{____}\)
\(If\ 5^x=100,wath\ is\ the\ value\ of\ 5^{x+2}\ ?\)
Hello Guest!
\(5^x=100\\ x\cdot lg\ 5=2\)
\(x=\frac{2}{lg\ 5}\\ 5^{\frac{2}{lg\ 5}+2}=\color{blue}2500\)
!