+0

# PLS HALP

+1
415
2
+40

There's A(-2,-1) and B(-4,2), the dot P is on the X axis and the absolute value of the line PA minus the line PB is the biggest. Where is dot P?

yomyhomies  Apr 12, 2017

### Best Answer

#2
+90001
+1

Let P be denoted as  (x, 0)

So PA  =    sqrt [ ( -2 -x)^2  + (-1)^2 ]    =  sqrt [ 4 + 4x + x^2 + 1]  =  sqrt [ x^2 + 4x + 5]

And PB  =  sqrt [ (-4 -x)^2  + 2^2 ]  =  sqrt [ 16 + 8x + x^2 + 4 ]  = sqrt [ x^2 + 8x + 20 ]

And we wish to maximize D.....where D  =

abs [sqrt(x^2 + 4x + 5)  -  sqrt ( x^2 + 8x + 20) ]

Take the derivative of the function inside the absolute value bars and and set to 0

[x + 2] / sqrt (x^2 + 4x + 5)   -   [x + 4] /  sqrt (x^2 + 8x + 20)    = 0

[x + 2] / sqrt (x^2 + 4x + 5)   =   [x + 4] /  sqrt (x^2 + 8x + 20)    cross-multiply

[x + 2]sqrt(x^2 + 8x + 20)   =  [x + 4]sqrt(x^2 + 4x+ 5)        square both sides

[x^2 + 4x + 4] [x^2 + 8x + 20]   = [x^2 + 8x + 16] [x^2 + 4x + 5]   simplify

x^4 + 12 x^3 + 56 x^2 + 112 x + 80   = x^4 + 12 x^3 + 53 x^2 + 104 x + 80

56x^2 + 112x   =  53x^2  + 104x

3x^2 + 8x  =  0       factor

x (3x + 8) = 0

There are two possible solutions......x  = 0    or x  = -8/3

And this graph confirms that for the original function,

abs [sqrt(x^2 + 4x + 5)  -  sqrt ( x^2 + 8x + 20) ],

the absolute value of PA -PB  is greatest ( = √5 ) when  x =0

https://www.desmos.com/calculator/vvmfqwf6wv

So.....(0,0)  is the point that maximizes the absolute value of PA - PB

{Thanks to heureka for pointing out my previous mistake...]

CPhill  Apr 12, 2017
edited by CPhill  Apr 13, 2017
#2
+90001
+1
Best Answer

Let P be denoted as  (x, 0)

So PA  =    sqrt [ ( -2 -x)^2  + (-1)^2 ]    =  sqrt [ 4 + 4x + x^2 + 1]  =  sqrt [ x^2 + 4x + 5]

And PB  =  sqrt [ (-4 -x)^2  + 2^2 ]  =  sqrt [ 16 + 8x + x^2 + 4 ]  = sqrt [ x^2 + 8x + 20 ]

And we wish to maximize D.....where D  =

abs [sqrt(x^2 + 4x + 5)  -  sqrt ( x^2 + 8x + 20) ]

Take the derivative of the function inside the absolute value bars and and set to 0

[x + 2] / sqrt (x^2 + 4x + 5)   -   [x + 4] /  sqrt (x^2 + 8x + 20)    = 0

[x + 2] / sqrt (x^2 + 4x + 5)   =   [x + 4] /  sqrt (x^2 + 8x + 20)    cross-multiply

[x + 2]sqrt(x^2 + 8x + 20)   =  [x + 4]sqrt(x^2 + 4x+ 5)        square both sides

[x^2 + 4x + 4] [x^2 + 8x + 20]   = [x^2 + 8x + 16] [x^2 + 4x + 5]   simplify

x^4 + 12 x^3 + 56 x^2 + 112 x + 80   = x^4 + 12 x^3 + 53 x^2 + 104 x + 80

56x^2 + 112x   =  53x^2  + 104x

3x^2 + 8x  =  0       factor

x (3x + 8) = 0

There are two possible solutions......x  = 0    or x  = -8/3

And this graph confirms that for the original function,

abs [sqrt(x^2 + 4x + 5)  -  sqrt ( x^2 + 8x + 20) ],

the absolute value of PA -PB  is greatest ( = √5 ) when  x =0

https://www.desmos.com/calculator/vvmfqwf6wv

So.....(0,0)  is the point that maximizes the absolute value of PA - PB

{Thanks to heureka for pointing out my previous mistake...]

CPhill  Apr 12, 2017
edited by CPhill  Apr 13, 2017

### New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.