Processing math: 100%
 
+0  
 
0
38
1
avatar+4 

Let f(x)= |x| and g(x)=x^2

Find all values of x for which f(x)>g(x)
 

 Mar 30, 2024
 #1
avatar+1556 
0

To find all values of x for which f(x)>g(x), where f(x)=|x| and g(x)=x2, we need to compare their values for different ranges of x.

 

1. For x0:


f(x)=|x|=x


g(x)=x2

 

So, f(x)>g(x) for x0 when x2>x, which is true when x>1 or x<0.

 

2. For x<0:


f(x)=|x|=x


g(x)=x2

 

So, f(x)>g(x) for x<0 when x>x2, which is true when x>x2 for x<0.

 

Let's solve x>x2 for x<0:


x>x2


x2+x<0


x(x+1)<0

 

This inequality holds true when either x<0 and x+1>0, or x>0 and x+1<0.

 

1. For x<0, x(x+1)<0 when x<0 and x+1>0 (the product of two negative numbers is positive):


x<0


x+1>0


x>1

 

So, for x<0, f(x)>g(x) when 1<x<0.

 

Combining both ranges of x, we have f(x)>g(x) for x>1 or 1<x<0.

 

Therefore, all values of x for which f(x)>g(x) are x(1,0)(1,).

 Mar 30, 2024

0 Online Users