Let
\(f(n) = \left\{ \begin{array}{cl} n^3+2n-1 &\text{ if }n>1, \\ n-1 &\text{ if }n \le 1. \end{array} \right.\)
Find \(f(0)+f(1)+f(2).\)
n = 0
n< 1 so f(0) = n-1 or f(0) = -1
n = 1 so f(1) = n-1 or f(1) = 0
n = 2
n>1 so f(2) = n^3 + 2n -1 or f(2) = 2^3 + 2*2 - 1 so f(2) = 11
I'll let you add them up..