We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
93
2
avatar

Let A, B, C be points on circle O such that AB is a diameter, and CO is perpendicular to AB. Let P be a point on OA, and let line CP intersect the circle again at Q. If OP = 20 and PQ = 7, find r^2, where r is the radius of the circle.

Picture: https://latex.artofproblemsolving.com/5/2/0/52028bb1d6c8a816ada5d2be3e55df12d704da4a.png

 Mar 12, 2019

Best Answer 

 #2
avatar+22299 
+2

Let A, B, C be points on circle O such that AB is a diameter, and CO is perpendicular to AB.
Let P be a point on OA, and let line CP intersect the circle again at Q.
If OP = 20 and PQ = 7, find r^2, where r is the radius of the circle.

Picture: https://latex.artofproblemsolving.com/5/2/0/52028bb1d6c8a816ada5d2be3e55df12d704da4a.png

 

\(\begin{array}{|rcll|} \hline \mathbf{PQ\cdot PC} &\mathbf{=}& \mathbf{AP\cdot PB} \quad | \quad PQ = 7 \\ 7\cdot PC &=& AP\cdot PB \quad | \quad AP = r-OP,\ PB =r+OP \\ 7\cdot PC &=& (r-OP)(r+OP) \quad | \quad PC=\sqrt{OP^2+r^2} \\ 7\cdot \sqrt{OP^2+r^2} &=& (r-OP)(r+OP) \quad | \quad OP = 20 \\ 7\cdot \sqrt{20^2+r^2} &=& (r-20)(r+20) \\ 7\cdot \sqrt{20^2+r^2} &=& r^2-20^2 \\ 7\cdot \sqrt{400+r^2} &=& r^2-400 \quad | \quad \text{square both sides} \\ 49\cdot (400+r^2) &=& (r^2-400)^2 \\ 49\cdot 400+ 49r^2 &=& r^4-800r^2+400^2 \\ r^4-800r^2- 49r^2+400^2-49\cdot 400 &=& 0 \\ r^4-849r^2+400(400-49) &=& 0 \\ r^4-849r^2+400\cdot 351 &=& 0 \\\\ r^2 &=& \dfrac{849\pm\sqrt{849^2-4\cdot 400\cdot 351}}{2} \\ &=& \dfrac{ 849\pm\sqrt{159201} }{2} \\ &=& \dfrac{ 849\pm 399 }{2} \\\\ r^2 &=& \dfrac{ 849+ 399 }{2} \\ r^2 &=& \dfrac{ 1248}{2} \\ \mathbf{r^2} &\mathbf{=}& \mathbf{624}\qquad ( r\approx 25)\\\\ r^2 &=& \dfrac{ 849- 399 }{2} \\ r^2 &=& \dfrac{ 849- 399 }{2} \\ r^2 &=& \dfrac{ 450}{2} \\ r^2 &=& 225 \qquad ( r=15, \ \text{ no solution },\ r > 20! ) \\ \hline \end{array}\)

 

 \(r^2\) is \(624\)

 

laugh

 Mar 13, 2019
 #1
avatar+234 
0

How far have you gotten so far?

 Mar 12, 2019
 #2
avatar+22299 
+2
Best Answer

Let A, B, C be points on circle O such that AB is a diameter, and CO is perpendicular to AB.
Let P be a point on OA, and let line CP intersect the circle again at Q.
If OP = 20 and PQ = 7, find r^2, where r is the radius of the circle.

Picture: https://latex.artofproblemsolving.com/5/2/0/52028bb1d6c8a816ada5d2be3e55df12d704da4a.png

 

\(\begin{array}{|rcll|} \hline \mathbf{PQ\cdot PC} &\mathbf{=}& \mathbf{AP\cdot PB} \quad | \quad PQ = 7 \\ 7\cdot PC &=& AP\cdot PB \quad | \quad AP = r-OP,\ PB =r+OP \\ 7\cdot PC &=& (r-OP)(r+OP) \quad | \quad PC=\sqrt{OP^2+r^2} \\ 7\cdot \sqrt{OP^2+r^2} &=& (r-OP)(r+OP) \quad | \quad OP = 20 \\ 7\cdot \sqrt{20^2+r^2} &=& (r-20)(r+20) \\ 7\cdot \sqrt{20^2+r^2} &=& r^2-20^2 \\ 7\cdot \sqrt{400+r^2} &=& r^2-400 \quad | \quad \text{square both sides} \\ 49\cdot (400+r^2) &=& (r^2-400)^2 \\ 49\cdot 400+ 49r^2 &=& r^4-800r^2+400^2 \\ r^4-800r^2- 49r^2+400^2-49\cdot 400 &=& 0 \\ r^4-849r^2+400(400-49) &=& 0 \\ r^4-849r^2+400\cdot 351 &=& 0 \\\\ r^2 &=& \dfrac{849\pm\sqrt{849^2-4\cdot 400\cdot 351}}{2} \\ &=& \dfrac{ 849\pm\sqrt{159201} }{2} \\ &=& \dfrac{ 849\pm 399 }{2} \\\\ r^2 &=& \dfrac{ 849+ 399 }{2} \\ r^2 &=& \dfrac{ 1248}{2} \\ \mathbf{r^2} &\mathbf{=}& \mathbf{624}\qquad ( r\approx 25)\\\\ r^2 &=& \dfrac{ 849- 399 }{2} \\ r^2 &=& \dfrac{ 849- 399 }{2} \\ r^2 &=& \dfrac{ 450}{2} \\ r^2 &=& 225 \qquad ( r=15, \ \text{ no solution },\ r > 20! ) \\ \hline \end{array}\)

 

 \(r^2\) is \(624\)

 

laugh

heureka Mar 13, 2019

3 Online Users

avatar