+0  
 
0
24
1
avatar

Let A = 1, B = 2, . . . , Z = 26. The product of a string of letters is defined as the product of the corresponding numbers of each letter in the string. For example, the product of the four-letter string “MATH” is 13 × 1 × 20 × 8 = 2080. How many six-letter strings have a product of 32,032?

 Jan 5, 2019
 #1
avatar+3535 
+1

\(\text{I get the following strings} \\ \left( \begin{array}{cccccc} \text{A} & \text{B} & \text{D} & \text{G} & \text{V} & \text{Z} \\ \text{A} & \text{B} & \text{D} & \text{K} & \text{N} & \text{Z} \\ \text{A} & \text{B} & \text{D} & \text{M} & \text{N} & \text{V} \\ \text{A} & \text{B} & \text{G} & \text{H} & \text{K} & \text{Z} \\ \text{A} & \text{B} & \text{G} & \text{H} & \text{M} & \text{V} \\ \text{A} & \text{B} & \text{G} & \text{K} & \text{M} & \text{P} \\ \text{A} & \text{B} & \text{H} & \text{K} & \text{M} & \text{N} \\ \text{A} & \text{D} & \text{G} & \text{H} & \text{K} & \text{M} \\ \end{array} \right)\)

.
 Jan 5, 2019

9 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.