Find the only value of $x$ that satisfies: $$\sqrt{7+\sqrt{4-\sqrt{3+x}}}=3$$
The value of x is 1.
I think the value of x is -3
sqrt(7+sqrt(4-sqrt(3+x))) = 3
7+sqrt(4-sqrt(3+x)) = 9
sqrt(4-sqrt(3+x)) = 2
4-sqrt(3+x) = 4
-sqrt(3+x) = 0
3+x = 0
x = -3
=^._.^=