Suppose that $a$ and $b$ are positive real numbers, and let
\[f(x) = \begin{cases} \frac{a}{b}x & \text{ if }x\le-4, \\ abx^2 & \text{ if }x>-4. \end{cases} \]
If $f(-4)=-\frac{60}{13}$ and $f(4)=3120$, what is $a+b$?
a + b = 24.