A function f has domain [0, 2] and range [0, 1]. (The notation [a, b] denotes {x : a ≤ x ≤ b}.) Define the function g as g(x) = 1 − f(x + 1). If [p, q] is the domain of g and [r,s] is the range of g, then determine p + q + r + s.
A function f has domain [0, 2] and range [0, 1]. (The notation [a, b] denotes {x : a ≤ x ≤ b}.)
Define the function g as g(x) = 1 − f(x + 1).
If [p, q] is the domain of g and [r,s] is the range of g, then determine p + q + r + s.
I am not really sure but,
f(x) has a domain of [0,2]
so
\(For\;\;f(x)\quad0\le x\le2\\ For\;\;f(x+1)\\ 0\le x+1 \le2\\ -1\le x \le1\)
So the domain of g is [-1,1] p=-1, q=1
----
\(0\le f(x+1) \le 1\\ \text{seperates to}\\ 0\le f(x+1) \qquad \qquad f(x+1) \le 1\\ 0\ge -f(x+1) \quad \qquad -f(x+1) \ge -1\\ 1\ge 1-f(x+1) \qquad 1-f(x+1) \ge 0\\ 1-f(x+1)\le 1 \qquad 0\le1-f(x+1)\\ 0\le1-f(x+1)\le 1\\ 0\le g \le 1\qquad \qquad \\\text{The range of g is [0,1]} \)
-1+1+0+1= 1
----------------------
Here is a graph that fits the description to help you understand what I have done
I chose f to be the top half of a circle, radius 1 and centre (1,0)
Here is the direct link to the Desmos graph if you want it.
https://www.desmos.com/calculator/xoul34kiqs
LaTex:
For\;\;f(x)\quad0\le x\le2\\
For\;\;f(x+1)\\
0\le x+1 \le2\\
-1\le x \le1
0\le f(x+1) \le 1\\
\text{seperates to}\\
0\le f(x+1) \qquad \qquad f(x+1) \le 1\\
0\ge -f(x+1) \quad \qquad -f(x+1) \ge -1\\
1\ge 1-f(x+1) \qquad 1-f(x+1) \ge 0\\
1-f(x+1)\le 1 \qquad 0\le1-f(x+1)\\
0\le1-f(x+1)\le 1\\
0\le g \le 1\qquad \qquad \\\text{The range of g is [0,1]}
A function f has domain [0, 2] and range [0, 1]. (The notation [a, b] denotes {x : a ≤ x ≤ b}.)
Define the function g as g(x) = 1 − f(x + 1).
If [p, q] is the domain of g and [r,s] is the range of g, then determine p + q + r + s.
I am not really sure but,
f(x) has a domain of [0,2]
so
\(For\;\;f(x)\quad0\le x\le2\\ For\;\;f(x+1)\\ 0\le x+1 \le2\\ -1\le x \le1\)
So the domain of g is [-1,1] p=-1, q=1
----
\(0\le f(x+1) \le 1\\ \text{seperates to}\\ 0\le f(x+1) \qquad \qquad f(x+1) \le 1\\ 0\ge -f(x+1) \quad \qquad -f(x+1) \ge -1\\ 1\ge 1-f(x+1) \qquad 1-f(x+1) \ge 0\\ 1-f(x+1)\le 1 \qquad 0\le1-f(x+1)\\ 0\le1-f(x+1)\le 1\\ 0\le g \le 1\qquad \qquad \\\text{The range of g is [0,1]} \)
-1+1+0+1= 1
----------------------
Here is a graph that fits the description to help you understand what I have done
I chose f to be the top half of a circle, radius 1 and centre (1,0)
Here is the direct link to the Desmos graph if you want it.
https://www.desmos.com/calculator/xoul34kiqs
LaTex:
For\;\;f(x)\quad0\le x\le2\\
For\;\;f(x+1)\\
0\le x+1 \le2\\
-1\le x \le1
0\le f(x+1) \le 1\\
\text{seperates to}\\
0\le f(x+1) \qquad \qquad f(x+1) \le 1\\
0\ge -f(x+1) \quad \qquad -f(x+1) \ge -1\\
1\ge 1-f(x+1) \qquad 1-f(x+1) \ge 0\\
1-f(x+1)\le 1 \qquad 0\le1-f(x+1)\\
0\le1-f(x+1)\le 1\\
0\le g \le 1\qquad \qquad \\\text{The range of g is [0,1]}