+0

# Pls help!

-1
219
2

The radius of a circle measures 11 inches. A central angle of the circle measuring 5π/9 radians cuts off a sector. What is the area of the sector?

Mar 30, 2020

#1
+2

Plan:

Radians of a circle = $$2\pi$$

Find the area of the circle, then multiply that by a fraction with the numerator of the central angle and the denominator of the total radians.

Solve

1. $$\pi{r^2}=121\pi$$

2.$$121{\pi}*\frac{\frac{5\pi}{9}}{2\pi}$$

3.$$121{\pi}*\frac{\frac{5}{9}}{2}$$

4.$$121{\pi}*\frac{5}{18}$$

5.$$\frac{605\pi}{18}$$

That is the simplest form unless you want the answer in decimal

Mar 30, 2020

#1
+2

Plan:

Radians of a circle = $$2\pi$$

Find the area of the circle, then multiply that by a fraction with the numerator of the central angle and the denominator of the total radians.

Solve

1. $$\pi{r^2}=121\pi$$

2.$$121{\pi}*\frac{\frac{5\pi}{9}}{2\pi}$$

3.$$121{\pi}*\frac{\frac{5}{9}}{2}$$

4.$$121{\pi}*\frac{5}{18}$$

5.$$\frac{605\pi}{18}$$

That is the simplest form unless you want the answer in decimal

AnExtremelyLongName Mar 30, 2020
#2
0

Very nice , AELN  !!!!!!   CPhill  Mar 30, 2020