+0  
 
-2
1575
2
avatar

The radius of a circle measures 11 inches. A central angle of the circle measuring 5π/9 radians cuts off a sector. What is the area of the sector?

 Mar 30, 2020

Best Answer 

 #1
avatar+658 
+2

Plan:

Radians of a circle = \(2\pi\)

 

Find the area of the circle, then multiply that by a fraction with the numerator of the central angle and the denominator of the total radians.

Solve

1. \(\pi{r^2}=121\pi\)

2.\(121{\pi}*\frac{\frac{5\pi}{9}}{2\pi}\)

3.\(121{\pi}*\frac{\frac{5}{9}}{2}\)

4.\(121{\pi}*\frac{5}{18}\)

5.\(\frac{605\pi}{18}\)

 

That is the simplest form unless you want the answer in decimal

 Mar 30, 2020
 #1
avatar+658 
+2
Best Answer

Plan:

Radians of a circle = \(2\pi\)

 

Find the area of the circle, then multiply that by a fraction with the numerator of the central angle and the denominator of the total radians.

Solve

1. \(\pi{r^2}=121\pi\)

2.\(121{\pi}*\frac{\frac{5\pi}{9}}{2\pi}\)

3.\(121{\pi}*\frac{\frac{5}{9}}{2}\)

4.\(121{\pi}*\frac{5}{18}\)

5.\(\frac{605\pi}{18}\)

 

That is the simplest form unless you want the answer in decimal

AnExtremelyLongName Mar 30, 2020
 #2
avatar+129852 
0

Very nice , AELN  !!!!!!

 

 

 

cool cool cool

CPhill  Mar 30, 2020

0 Online Users