Given that
\(\frac{1}{x} + \frac{1}{y} = 5 \)
\(3xy + x + y = 4\)
compute \(x^2y+xy^2\)
Thanks in advance!
1/x + 1/y = 5
(x + y)/xy = 5
x + y = 5xy
3xy + x + y = 4
x + y = 4 - 3xy
5xy = 4 - 3xy
8xy = 4
xy = 1/2
\(x^2 y + xy^2 = (x+y)(xy) = 5(1/2)(1/2) = \boxed{5/4}\)