1)Find BC.

Picture: https://latex.artofproblemsolving.com/f/e/4/fe45662f573f87e30f9f30d0b1ef1f94b4c22fc2.png


2)Find AC. 

Picture: https://latex.artofproblemsolving.com/6/8/d/68dd918aac5d85a0b2a5b3b9c6a79eabd3669f01.png


3)In triangle ABC, CA = 4sqrt2, CB = 4sqrt3, and angle A = 60 degrees. What is B in degrees?


4)Find AC.

Picture: https://latex.artofproblemsolving.com/9/1/d/91d520533f0fb8cb325932013b2aebf0db9bde54.png


5)Find sin B.



6)Find cos A.

Picture: https://latex.artofproblemsolving.com/6/4/a/64ae47768bae6b24ab792c44a92c5de244955cad.png


7)In triangle ABC, sin A = 4/5. Find cos B.

Picture: https://latex.artofproblemsolving.com/c/8/3/c83240e209d830cd2275ed9f771185a1d1c17733.png


8)Find DB in the diagram below.

Picture: https://latex.artofproblemsolving.com/f/6/f/f6f917a5c86b363a5cdf8871300d061dcd54fc0b.png

FiestyGeco  Jun 11, 2018

Hey FiestyGeco!


I can only help you with 3, since the pictures won't show. 


For 3, we use \(c^2=a^2+b^2-2ab\cos\gamma\), the law of cosines.


This formula generalizes the Pythagorean Theorem, since \(\cos90ยบ=0\Rightarrow a^2+b^2=c^2\)


We can write: \(CB^2=CA^2+AB^2-2(AC)(AB)-\cos{A}\)


\((4\sqrt3)^2=(4\sqrt2)^2+AB^2-2(4\sqrt2)(AB)-\cos60\\ 48=32+AB^2-8\sqrt2AB-\frac12\\ \)

After solving for AB, you use the same formula to solve for the angle.         


This doesn't look like the best method, does anyone know a less rigid way of doing this?


I hope this helped,



GYanggg  Jun 11, 2018

17 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.