We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
180
1
avatar+42 

Shown below is rectangle EFGH . Its diagonals meet at Y . Let X be the foot if an altitude is dropped from E to line FH . If

EX=24 and GY = 25, find the perimeter of rectangle .

 

 

 

 Jan 23, 2019
 #1
avatar+23137 
+7

Shown below is rectangle EFGH . Its diagonals meet at Y .
Let X be the foot if an altitude is dropped from E to line FH . If
EX=24 and GY = 25, find the perimeter of rectangle .

\(\text{Let $EH$ = x }\\ \text{Let $EF$ = y }\\ \text{Let $EY=HY$ = 25 }\\ \text{Let $HF$ = 50 }\)

 

1.

\(\begin{array}{|rcll|} \hline EY^2 &=& EX^2+XY^2 \quad & | \quad XY=HY-H = 25 - HX \\ 25^2 &=& 24^2+(25-HX)^2 \\ 25^2-24^2 &=& (25-HX)^2 \\ \sqrt{25^2-24^2} &=& 25-HX \\ HX &=& 25 - \sqrt{25^2-24^2} \\ HX &=& 25 - 7 \\ \mathbf{ HX} & \mathbf{=} & \mathbf{18} \\ \hline \end{array}\)

 

2.

\(\begin{array}{|rcll|} \hline x^2 &=& 24^2 + HX^2 \quad & | \quad HX=18\\ x^2 &=& 24^2 + 18^2 \\ x &=& \sqrt{24^2 + 18^2} \\ \mathbf{ x} & \mathbf{=} & \mathbf{30} \\ \hline \end{array}\)

 

3.

\(\begin{array}{|rcll|} \hline x^2+y^2 &=& HF^2 \quad & | \quad x=30, ~ HF=50 \\ 30^2+y^2 &=& 50^2 \\ y^2 &=& 50^2-30^2 \\ y &=& \sqrt{50^2-30^2} \\ \mathbf{ y} & \mathbf{=} & \mathbf{40} \\ \hline \end{array}\)

 

The perimeter of rectangle:

\(\begin{array}{|rcll|} \hline && 2x+2y \\ &=& 2\cdot 30 + 2\cdot 40 \\ &=& 60 + 80 \\ &\mathbf{=}& \mathbf{140} \\ \hline \end{array}\)

 

The perimeter of rectangle is 140

 

laugh

 Jan 24, 2019

35 Online Users

avatar