We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
48
1
avatar

Hi, I really need help with the following problem and received an off topic reply on the past post. Please help!!!

 

Let v and w be vectors such that \({proj}_{{w}}({v} )= \begin{pmatrix} 4 \\ -7 \end{pmatrix}\).

Find \(\operatorname{proj}_{-2 {w}} (3 {v})\).

 Oct 11, 2019
 #1
avatar+439 
+5

 

The equation,

\(projx⃗ y⃗ =x⃗ ⋅y⃗ |x⃗ |x⃗ |x⃗ |projx→y→=x→⋅y→|x→|x→|x→|\)

Holds for any vectors we can let those be \(πa⃗ πa→ and eb⃗ eb→\). Where ππ and ee are some random constants like −2−2 and 33.

\(projπa⃗ eb⃗ =πa⃗ ⋅eb⃗ |πa⃗ |πa⃗ |πa⃗ |projπa→eb→=πa→⋅eb→|πa→|πa→|πa→|\)

Now use\( a⃗ ⋅(cb⃗ )=ca⃗ ⋅b⃗ a→⋅(cb→)=ca→⋅b→ and |cw⃗ |=c|w⃗ ||cw→|=c|w→|.\) To get

e(pro j base a to the power of b) is the answer because 

\(π2eπ2a⃗ ⋅b⃗ |a⃗ |a⃗ |a⃗ |=π2eπ2a→⋅b→|a→|a→|a→| = \)

.
 Oct 11, 2019
edited by SVS2652  Oct 11, 2019

32 Online Users

avatar
avatar
avatar
avatar