Find the minimum possible value of √58−42x+√149−140√1−x2 where −1≤x≤1
It is given that −1≤x≤1
Case 1: when x=−1
√58−42x+√149−140√1−x2=√100+√149
=10+7
=17
Case 2: when x=0
√58−42x+√149−140√1−x2=√58+√9
=7.6+3
=10.6
Case 3: when x=1
√58−42x+√149−140√1−x2=√16+√149
=4+7
=11
Comparing cases 1, 2 and 3
Minimum value =10.6
∴ Minimum possible value of given expression is 10.6
~Hope you got it:)