We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
610
1
avatar+644 

Let d(n) equal the number of positive divisors of the integer n. Find d(d(p^{p-1})) where p is any prime number.

 Aug 23, 2017
 #1
avatar+22196 
0

Let d(n) equal the number of positive divisors of the integer n.

Find d(d(p^{p-1})) where p is any prime number.

 

Example:

\(\small{ \begin{array}{|c|c|c|c|c|c|c|c|c|c|c|c|c|} \hline n & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ \hline \text{divisors of } n & 1 & 1, 2 & 1, 3 & 1, 2, 4 & 1, 5 & 1, 2, 3, 6 & 1, 7 & 1, 2, 4, 8 & 1, 3, 9 & 1, 2, 5, 10 & 1, 11 & 1, 2, 3, 4, 6, 12 \\ \hline d(n) & 1 & 2 & 2 & 3 & 2 & 4 & 2 & 4 & 3 & 4 & 2 & 6 \\ \hline \end{array} }\)

 

Formula:

d(p) = 2, if p is any prime number.

 

Formula:

\(\begin{array}{|llcll|} \hline \text{if} & n = p_1^{e_1}\cdot p_2^{e_2}\cdot \ldots \cdot p_r^{e_r} \\ \text{then} & d(n) = (e_1+1)(e_2+2)\cdots (e_r+1) \\ \hline \end{array} \)

 

Solution:

\(\begin{array}{|rcll|} \hline d(p^{p-1}) &=& (p-1+1) \\ &=& p \\\\ d(p) &=& 2 \\\\ \mathbf{d(d(p^{p-1}))} & \mathbf{=} & \mathbf{2} \\ \hline \end{array}\)

 

 

laugh

 Aug 23, 2017

9 Online Users

avatar