Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
2786
1
avatar+647 

Let d(n) equal the number of positive divisors of the integer n. Find d(d(p^{p-1})) where p is any prime number.

 Aug 23, 2017
 #1
avatar+26396 
+1

Let d(n) equal the number of positive divisors of the integer n.

Find d(d(p^{p-1})) where p is any prime number.

 

Example:

n123456789101112divisors of n11,21,31,2,41,51,2,3,61,71,2,4,81,3,91,2,5,101,111,2,3,4,6,12d(n)122324243426

 

Formula:

d(p) = 2, if p is any prime number.

 

Formula:

ifn=pe11pe22perrthend(n)=(e1+1)(e2+2)(er+1)

 

Solution:

d(pp1)=(p1+1)=pd(p)=2d(d(pp1))=2

 

 

laugh

 Aug 23, 2017

3 Online Users

avatar
avatar