We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+1
124
2
avatar

For what value of the constant a,

\(\begin{align*} 2x + 5y &= -8,\\ 6x &= 16 + a - 15y \end{align*}\)

does the system of equations below have infinitely many solutions?

 May 31, 2019
 #1
avatar+8756 
+3

2x + 5y  =  -8          Multiply both sides of this equation by  3.

6x + 15y  =  -24

 

6x  =  16 + a - 15y          Add  15y  to both sides of this equation.

6x + 15y  =  16 + a

 

So now our two equations are:

6x + 15y  =  -24

6x + 15y  =  16 + a

 

The system will have infinitely many solutions when both equations are identical.

So the system will have infinitely many solutions when....

 

-24  =  16 + a          Subtract  16  from both sides of this equation.

-40  =  a

a  =  -40

 

Check: https://www.desmos.com/calculator/r2kk6kmsgq

 May 31, 2019
 #2
avatar+7712 
+1

\(\begin{cases} 2x + 5y = -8\\ 6x + 15y = 16 + a \end{cases}\\ \begin{cases} 2x + 5y = -8\\ 2x + 5y = \dfrac{16 + a}3 \end{cases}\\ \dfrac{16+a}{3} = -8\\ 16 + a = -24\\ a = -40\)

.
 Jun 1, 2019

34 Online Users

avatar