Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
992
2
avatar+752 

sin[(pi/4)+A]*sin[(pi/4)-A]

=1/2(2sin(45+A)sin(45-A))

=1/2(2cos 2A - cos 90)

=1/2 cos 2A

What do u think about that?

 Jul 27, 2014

Best Answer 

 #1
avatar+130477 
+10

Using the sum and difference identities for the sine, we have......

[sin(pi/4)cosA + sin(A) cos(pi/4)] * [sin(pi/4)cosA - sinAcos(pi/4)] =

[sin(pi/4)cosA]2 - (sin(A)cos(pi/4)]2 =

[(1/2)cos2A] - [(1/2)sin2(A)] =

(1/2)[cos2A - sin2A] =

(1/2)cos2A

Which is the same as your answer, Sasini .....  !!!!

 

 Jul 27, 2014
 #1
avatar+130477 
+10
Best Answer

Using the sum and difference identities for the sine, we have......

[sin(pi/4)cosA + sin(A) cos(pi/4)] * [sin(pi/4)cosA - sinAcos(pi/4)] =

[sin(pi/4)cosA]2 - (sin(A)cos(pi/4)]2 =

[(1/2)cos2A] - [(1/2)sin2(A)] =

(1/2)[cos2A - sin2A] =

(1/2)cos2A

Which is the same as your answer, Sasini .....  !!!!

 

CPhill Jul 27, 2014
 #2
avatar+118703 
+5

Hi Sasini,

sin[π4+A]sin[π4A]=[sinπ4cosA+cosπ4sinA][sinπ4cosAcosπ4sinA]The two brackets are the same except one has a minus and the other a plus so this simplifies to the difference of 2 squares=[sinπ4cosA]2[cosπ4sinA]2=[sin2π4cos2A][cos2π4sin2A]=[12cos2A][12sin2A]=cos2Asin2A2or=12sin2A2or=cos2A2

 

I got the same as well 

 Jul 27, 2014

1 Online Users

avatar