+0  
 
0
976
2
avatar+752 

sin[(pi/4)+A]*sin[(pi/4)-A]

=1/2(2sin(45+A)sin(45-A))

=1/2(2cos 2A - cos 90)

=1/2 cos 2A

What do u think about that?

 Jul 27, 2014

Best Answer 

 #1
avatar+129899 
+10

Using the sum and difference identities for the sine, we have......

[sin(pi/4)cosA + sin(A) cos(pi/4)] * [sin(pi/4)cosA - sinAcos(pi/4)] =

[sin(pi/4)cosA]2 - (sin(A)cos(pi/4)]2 =

[(1/2)cos2A] - [(1/2)sin2(A)] =

(1/2)[cos2A - sin2A] =

(1/2)cos2A

Which is the same as your answer, Sasini .....  !!!!

 

 Jul 27, 2014
 #1
avatar+129899 
+10
Best Answer

Using the sum and difference identities for the sine, we have......

[sin(pi/4)cosA + sin(A) cos(pi/4)] * [sin(pi/4)cosA - sinAcos(pi/4)] =

[sin(pi/4)cosA]2 - (sin(A)cos(pi/4)]2 =

[(1/2)cos2A] - [(1/2)sin2(A)] =

(1/2)[cos2A - sin2A] =

(1/2)cos2A

Which is the same as your answer, Sasini .....  !!!!

 

CPhill Jul 27, 2014
 #2
avatar+118687 
+5

Hi Sasini,

$$sin[\frac{\pi}{4}+A]*sin[\frac{\pi}{4}-A]\\\\
=[sin\frac{\pi}{4}cosA+cos\frac{\pi}{4}sinA][sin\frac{\pi}{4}cosA-cos\frac{\pi}{4}sinA]\\\\
\mbox{The two brackets are the same except one has a minus and the other a plus so this simplifies to the difference of 2 squares}\\\\
=[sin\frac{\pi}{4}cosA]^2-[cos\frac{\pi}{4}sinA]^2\\\\
=[sin^2\frac{\pi}{4}*cos^2A]-[cos^2\frac{\pi}{4}*sin^2A]\\\\
=[\frac{1}{2}cos^2A]-[\frac{1}{2}sin^2A]\\\\
=\frac{cos^2A-sin^2A}{2}\\\\
or\qquad
=\frac{1-2sin^2A}{2}\\\\
or\qquad
=\frac{cos2A}{2}$$

 

I got the same as well 

 Jul 27, 2014

1 Online Users

avatar