sin[(pi/4)+A]*sin[(pi/4)-A]
=1/2(2sin(45+A)sin(45-A))
=1/2(2cos 2A - cos 90)
=1/2 cos 2A
What do u think about that?
Using the sum and difference identities for the sine, we have......
[sin(pi/4)cosA + sin(A) cos(pi/4)] * [sin(pi/4)cosA - sinAcos(pi/4)] =
[sin(pi/4)cosA]2 - (sin(A)cos(pi/4)]2 =
[(1/2)cos2A] - [(1/2)sin2(A)] =
(1/2)[cos2A - sin2A] =
(1/2)cos2A
Which is the same as your answer, Sasini ..... !!!!
Using the sum and difference identities for the sine, we have......
[sin(pi/4)cosA + sin(A) cos(pi/4)] * [sin(pi/4)cosA - sinAcos(pi/4)] =
[sin(pi/4)cosA]2 - (sin(A)cos(pi/4)]2 =
[(1/2)cos2A] - [(1/2)sin2(A)] =
(1/2)[cos2A - sin2A] =
(1/2)cos2A
Which is the same as your answer, Sasini ..... !!!!
Hi Sasini,
sin[π4+A]∗sin[π4−A]=[sinπ4cosA+cosπ4sinA][sinπ4cosA−cosπ4sinA]The two brackets are the same except one has a minus and the other a plus so this simplifies to the difference of 2 squares=[sinπ4cosA]2−[cosπ4sinA]2=[sin2π4∗cos2A]−[cos2π4∗sin2A]=[12cos2A]−[12sin2A]=cos2A−sin2A2or=1−2sin2A2or=cos2A2
I got the same as well