Δx= 98200−94700=3500
\Delta{x} =
Δy= 29500−28200=1300
\Delta{y}=
r=√Δx2+Δy2= √35002+13002=3733.6309405188938679
r=\sqrt{\Delta{x}^2+\Delta{y}^2}=
θ=tan−1(ΔyΔx)= tan360∘−1(13003500)=20.376435213836∘
\theta= \tan^{-1}{(\frac{\Delta{y}}{\Delta{x}})} =
so
r=3733.63 units
r = 3733.63 \mbox{ units}
and
θ=20.3764\ensuremath∘
\theta = 20.3764 \ensuremath{^\circ}
Are you looking to turn rectangular coordinates into polar coordinates?
If so, pol(x,y) becomes (r, θ) where θ = tan-1(y/x) and r = √(x2 + y2)
However, I don't know if the values you've supplied are meant to indicate the end values of a range, or if the numbers are to be subtracted or what!
Δx= 98200−94700=3500
\Delta{x} =
Δy= 29500−28200=1300
\Delta{y}=
r=√Δx2+Δy2= √35002+13002=3733.6309405188938679
r=\sqrt{\Delta{x}^2+\Delta{y}^2}=
θ=tan−1(ΔyΔx)= tan360∘−1(13003500)=20.376435213836∘
\theta= \tan^{-1}{(\frac{\Delta{y}}{\Delta{x}})} =
so
r=3733.63 units
r = 3733.63 \mbox{ units}
and
θ=20.3764\ensuremath∘
\theta = 20.3764 \ensuremath{^\circ}