+0  
 
0
227
4
avatar

In a polar coordinate system ,O is the pole.The polar coordinates of A and B are(6,15) and (6,255) respectively.P is a moving point in the system such that PA=PB.

If Q is a point lying on P such that OABQ is a rhombus , find polar coordinates of Q

Guest Mar 5, 2015

Best Answer 

 #4
avatar+26399 
+5

Nice, elegant reasoning Bertie!

.

Alan  Mar 5, 2015
Sort: 

4+0 Answers

 #1
avatar+26399 
+5

 Rhombus

 Image

.

Alan  Mar 5, 2015
 #2
avatar+18827 
+5

In a polar coordinate system ,O is the pole.The polar coordinates of A and B are(6,15) and (6,255) respectively.P is a moving point in the system such that PA=PB.If Q is a point lying on P such that OABQ is a rhombus , find polar coordinates of Q

$$\small{\text{$
\vec{Q}=\vec{A}+\vec{B}
$, because $|\vec{A}| = |\vec{B}| = 6 = r \quad$
Q lies on the bisectors of an angle by O
}}\\\\
\small{\text{
$\vec{A}=
\left(
\begin{array}{c}r\cdot \cos{(15)}\\r\cdot \sin{(15)}\end{array}
\right)
=
\left(
\begin{array}{c}6\cdot \cos{(15)}\\6\cdot \sin{(15)}\end{array}
\right)$
}}\\
\small{\text{
$\vec{B}=
\left(
\begin{array}{c}r\cdot \cos{(255)}\\r\cdot \sin{(255)}\end{array}
\right)
=
\left(
\begin{array}{c}6\cdot \cos{(255)}\\6\cdot \sin{(255)}\end{array}
\right)
$
}}\\\\
\small{\text{$
\vec{Q}=\vec{A}+\vec{B}
=
\left(
\begin{array}{c}6\cdot \cos{(15)}\\6\cdot \sin{(15)}\end{array}
\right)
+
\left(
\begin{array}{c}6\cdot \cos{(255)}\\6\cdot \sin{(255)}\end{array}
\right)
=
\left(
\begin{array}{c}
6\cdot \cos{(15)} + 6\cdot \cos{(255)}
\\ 6\cdot \sin{(15)} + 6\cdot \sin{(255)}
\end{array}
\right)
$}}\\\\
\small{\text{$
=
\left(
\begin{array}{c} 4.24264068712 \\ -4.24264068712 \end{array}
\right)
=
\left(
\begin{array}{c} \sqrt{18} \\ - \sqrt{18} \end{array}
\right)
$}}$$

polar coordinates of Q

$$\small{\text{
$
\vec{Q}= \left(\begin{array}{c} Q_x =\sqrt{18}\\ Q_y=-\sqrt{18} \end{arry} \right)
\qquad r = \sqrt{ Q_x^2 + Q_y^2 } = \sqrt{18+18} = 6
$
}}\\\\
\small{\text{
$
\tan{(\varphi)} = \dfrac{Q_y}{ Q_x} = \dfrac{-\sqrt{18}}{\sqrt{18}} = -1 \qquad\varphi = -45\ensurement{^{\circ}} $ or $ \varphi = 315\ensurement{^{\circ}} $
}}\\\\
\vec{Q}=(6, 315\ensurement{^{\circ}} )$$

heureka  Mar 5, 2015
 #3
avatar+889 
+5

I'm going to cheat slightly and refer to Alan's rather nice diagram. (I drew it on paper).

The angle that OB makes with the negative y-axis is 15 deg which means that the angle AOB is 120 deg, which in turn means that the angle OBQ is 60 deg.

OB and BQ being the same length implies that the triangle OBQ is equilateral in which case the length of OQ is 6 and it's at an angle of 45 deg to the negative y-axis.

That means that Q has polar co-ordinates (6, -45deg).

Bertie  Mar 5, 2015
 #4
avatar+26399 
+5
Best Answer

Nice, elegant reasoning Bertie!

.

Alan  Mar 5, 2015

21 Online Users

avatar
avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details