+0  
 
0
278
4
avatar

The number of diagonals in a certain regular polygon is equal to \(6\) times the number of sides. How many sides does this polygon have?

 Apr 13, 2022

Best Answer 

 #1
avatar+2668 
+1

The formula for diagonals is: \(s(s-3) \over2\)

 

We now have an equation to solve: \({s(s-3) \over 2} = 6s\)

 

Simplifying: \(s^2-3s=12s\)

 

Converting to a quadratic, we get: \(s^2 - 15s = 0\)

 

We know that \(15s = s^2\), so there are \(\color{brown}\boxed {15}\) sides. 

 Apr 13, 2022
 #1
avatar+2668 
+1
Best Answer

The formula for diagonals is: \(s(s-3) \over2\)

 

We now have an equation to solve: \({s(s-3) \over 2} = 6s\)

 

Simplifying: \(s^2-3s=12s\)

 

Converting to a quadratic, we get: \(s^2 - 15s = 0\)

 

We know that \(15s = s^2\), so there are \(\color{brown}\boxed {15}\) sides. 

BuilderBoi Apr 13, 2022
 #2
avatar+64 
-1

You seem as if your rly in 10 or higher 

 Apr 13, 2022
 #3
avatar+2668 
+1

grade 10? 

BuilderBoi  Apr 13, 2022
 #4
avatar+64 
-2

Yea smart

Kakashi  Apr 13, 2022

4 Online Users

avatar
avatar