Find the remainder when x^15 + 1 is divided by x-1.
Hello Guest!
\((x^{15}\) \(+1)\) : \((x-1)\) \(=x^{14}+x^{13}+…+x^2+x \)\(+\large \frac{x+1}{x-1}\)
\(\underline{x^{15}-x^{14}}\)
\(x^{14}\)
\(\underline{x^{14}-x^{13}}\) \( \frac{x+1}{x-1}=1+\frac{2}{x-1}\)
\(x^{13 }\)
.... \(\underline{x^2-x}\)
\(x\color{red}+1\)
!