Let a and b real numbers such that x^4+2x^3-4x^2+ax+b = (Q(x))^2 for some polynomial Q(x). What is the value of a + b?
Let a and b real numbers such that x4+2x3−4x2+ax+b=(Q(x))2 for some polynomial Q(x).
What is the value of a + b?
x4+2x3−4x2+ax+b=(Q(x))2(Q(x))2=(x2+mx+t)(x2+mx+t)(Q(x))2=x4+mx3+tx2+mx3+m2x2+mtx+tx2+mtx+t2(Q(x))2=x4+2mx3+2tx2+m2x2+2mtx+t2(Q(x))2=x4+2mx3+(2t+m2)x2+2mtx+t2
2m=2som=12t+m2=−42t+1=−4t=−2.5 2mt=a2∗1∗−2.5=aa=−5 t2=bb=(−2.5)2b=6.25 a+b=6.25−5=1.25
Latex
x^4+2x^3-4x^2+ax+b = (Q(x))^2\\
(Q(x))^2=(x^2+mx+t)(x^2+mx+t) \\
(Q(x))^2=x^4+mx^3+tx^2\;\;+mx^3+m^2x^2+mtx\;+\;tx^2+mtx+t^2\\
(Q(x))^2=x^4+2mx^3+2tx^2\;\;+m^2x^2+2mtx+t^2\\
(Q(x))^2=x^4+2mx^3+(2t+m^2)x^2+2mtx+t^2\\