Let $b$ be a constant. What is the smallest possible degree of the polynomial $f(x) + b \cdot g(x)$, where $f(x) = 2x^5 - 6x^4 - 4x^3 + 12x^2 + 7x - 5$ and $g(x) = x^15 - 3x^14 - 2x^13 - 6x^12 + 14x - 10$?
\( f(x) + b \cdot g(x)\)
If b = 0, the resulting polynomial will be degree 5