Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
474
2
avatar

Given that the polynomial x^2-kx+160 has only positive integer roots, find the average of all distinct possibilities for k.

 Aug 9, 2021
 #1
avatar+175 
+7

first of all we are given that the roots $\in \mathbb{Z}^{++}$. going easy on this, by using vietas formula we know that the sum of the roots of that polynomial is $\frac{16}{a}$, and the product of them is $\frac{-(-k)}{a}$ where $a=1$ right?


so, this polynomial is such that it has got these three solutions: $(16,1) \ \wedge\ (8,2) \ \wedge\ (4,4)$ , therefore the sum of all those would give us $k \{ 17 \ \wedge\ 10 \ \wedge\ 8 \}$

 

adding them alltogether we get $35$ which when divided by three gives us $11. \overline{6}  $ or more correctly $11\frac{2}{3}$rds

 Aug 9, 2021
 #2
avatar+15069 
+2

Given that the polynomial x^2-kx+160 has only positive integer roots, find the average of all distinct possibilities for k.

 

Hello Guest!

 

x2kx+160x=(k)2±(k2)2160[(k2)2160]{Square numbers}[(k2)2160]{1,4,9,16,25,36,49,64,81,100,121,144,169,196,225,256,289,324,361,400,441,484,529,576,625}

[(k2)2160]{9,    36,   65,   96,   129, 164, 201,  240, 281,  324, 369,  416,  465}  

      k{              2196,                                                       2484 }

 

      k{                    28,                                                                44   }

 

  x=(k)2±(k2)2160x1=282±(282)2160=14±6x1=8x2=20x3=442±(442)2160=22±18x3=4

  x4=40

laugh  !

 Aug 9, 2021
edited by asinus  Aug 10, 2021
edited by asinus  Aug 10, 2021
edited by asinus  Aug 10, 2021
edited by asinus  Aug 10, 2021

1 Online Users