We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+7
158
10
avatar+701 

The polynomial f(x) has degree 3. If f(-1) = 15, f(0) = 0, f(1) = -5, and f(2) = 12, then what are the x-intercepts of the graph of f?

 

Thanks so much, smiley

 #1
avatar+701 
0

I have this so far:

 

From the problem, we know that $x^3$ is the leading term, and $3$ is the largest power. We also know that $f(x)$ has no constant because $f(0) = 0$. We can write our equation as $f(x) = a_3x^3 + a_2x^2 + a_1x$ with $a_3, a_2,$ and $a_1$ as coefficients of different powers of $x$. We can also factor $f(x) = a_3x^3 + a_2x^2 + a_1x$ into $f(x) = x(a_3x^2 + a_2x + a_1)$.

 

With the information $f(1) = -5$, we know that $a_3 + a_2 + a_1 = -5$ since $1^n = 1$.  

 

Using the information $f(2) = 12$, we can plug in $2$ for $x$ in $f(x) = x(a_3x^2 + a_2x + a_1)$ to get $12 = 2(a_3(2^2) + a_2(2) + a_1)$. The equation simplifies into $12 = 2(4a_3 + 2a_2 + a_1)$, and by dividing both sides by $2$, we have $4a_3 + 2a_2 + a_1 = 12$.

 

Using the information $f(-1) = 15$, we can plug in $-1$ for $x$ in $f(x) = x(a_3x^2 + a_2x + a_1)$ to get $15 = -(a_3((-1)^2) + a_2(-1) + a_1)$. The equation simplifies into $15 = -(a_3 - a_2 + a_1)$, and by multiplying both sides by $-1$, we have $a_3 - a_2 + a_1 = -15$. 

 

We have the three equations [#1] $a_3 + a_2 + a_1 = -5$, [#2] $4a_3 + 2a_2 + a_1 = 12$, and [#3] $a_3 - a_2 + a_1 = -15$. Using system of equations on the first and thrid equations, we have $(a_3 + a_2 + a_1) - (a_3 - a_2 + a_1) = -5 - (-15)$, which simplifies into $2a_2 = 10 \Rightarrow a_2 = 5$. Substituting $a_2 = 5$ in the first equation, we have [#4] $a_3 + a_1 = -10$, and substituting $a_2 = 5$ in the second equation, we have [#5] $4a_3 + a_1 = 2$. Using system of equations on the fourth and fifth equations, we have $(a_3 + a_1) - (4a_3 + a_1) = -10-2$, which simplifies into $-3a_3 = -12 \Rightarrow a_3 = 4$. Plugging in the values $a_2 = 5$ and $a_3 = 4$ into the first equation, we have $4 + 5 + a_1 = -5$, which simplifies to $a_1 = -14$.

 

Plugging the values $a_2 = 5$, $a_3 = 4$, and $a_1 = -14$ into $f(x) = x(a_3x^2 + a_2x + a_1)$, we have $f(x) = x(4x^2 + 5x -14)$. 

edited by PartialMathematician  Dec 7, 2018
 #6
avatar+701 
0

Thanks, heureka!

 

- PM

 #8
avatar+701 
0

Oof, I got them wrong frown

 #7
avatar+22010 
+15

The polynomial f(x) has degree 3. If f(-1) = 15, f(0) = 0, f(1) = -5, and f(2) = 12,

 then what are the x-intercepts of the graph of f?

 

\(\boxed{f(x) =ax^3+bx^2+cx+d}\) degree 3

 

\(\begin{array}{|lrcll|} \hline f(0) = 0: & f(0) = 0 &=& a\cdot 0^3+ b\cdot 0^2+ c\cdot 0 +d \\ & 0 &=& d \\ & \mathbf {d }& \mathbf{=}& \mathbf{0} \\ \hline \end{array} \)

 

So  \(\boxed{f(x) =ax^3+bx^2+cx}\)

 

\(\begin{array}{|lrcll|} \hline f(1) = -5: & f(1) = -5 &=& a\cdot 1^3+ b\cdot 1^2+ c\cdot 1 \\ & -5 &=& a + b + c \\ & \mathbf {a + b + c }& \mathbf{=}& \mathbf{-5} \qquad (1) \\ \hline \end{array}\)

\(\begin{array}{|lrcll|} \hline f(-1) = 15: & f(-1) = 15 &=& a\cdot (-1)^3+ b\cdot (-1)^2+ c\cdot (-1) \\ & 15 &=& -a + b - c \\ & \mathbf {-a + b - c }& \mathbf{=}& \mathbf{15}\qquad (2) \\ \hline \end{array}\)

 

\(\mathbf{(1)+(2):}\)

\(\begin{array}{|lrcll|} \hline (1) & \mathbf {a + b + c }& \mathbf{=}& \mathbf{-5} \\ (2) & \mathbf {-a + b - c }& \mathbf{=}& \mathbf{15} \\ \hline (1)+(2): & 2b &=& -5+15 \\ & 2b &=& 10 \\ & \mathbf {b }& \mathbf{=}& \mathbf{5} \\ \hline (1) : & a+b+c &=& -5 \quad | \quad b=5 \\ & a+5+c &=& -5 \\ & \mathbf {a+c} &\mathbf {=}& \mathbf {-10} \qquad (3) \\ \hline \end{array}\)

 

\(\begin{array}{|lrcll|} \hline f(2) = 12: & f(2) = 12&=& a\cdot (2)^3+ b\cdot (2)^2+ c\cdot (2) \\ & 12 &=& 8a + 4b +2c \quad | \quad b=5 \\ & 12 &=& 8a + 4\cdot 5 +2c \\ & 12 &=& 8a + 20 +2c \\ & 8a + 2c &=& 12-20 \\ & 8a + 2c &=& -8 \quad & | \quad :2 \\ & \mathbf {4a + c}& \mathbf{=}& \mathbf{-4}\qquad (4) \\ \hline \end{array}\)

 

\(\mathbf{(4)-(3):}\)

\(\begin{array}{|lrcll|} \hline (4) & \mathbf {4a + c}& \mathbf{=}& \mathbf{-4} \\ (3) & \mathbf {a+c} &\mathbf {=}& \mathbf {-10}\\ \hline (4)-(3): & 3a &=& -4+-(-10)\\ & 3a &=& 6 \\ & \mathbf {a }& \mathbf{=}& \mathbf{2} \\ \hline (3) : & a+c &=& -10 \quad | \quad a=2 \\ & 2+c &=& -10 \\ & \mathbf {c} &\mathbf {=}& \mathbf {-12} \\ \hline \end{array}\)

 

 

\(\mathbf{\text{The $x$-intercepts of the graph of $~\boxed{f(x)=2x^3+5x^2-12x}$:}}\)

 

\(\begin{array}{|rcll|} \hline 2x^3+5x^2-12x &=& 0 \\ x\cdot (2x^2+5x-12) &=& 0 \\ \hline \mathbf{x_1} & \mathbf{=}& \mathbf{ 0 } \\ \hline 2x^2+5x-12 &=& 0 \\ x &=& \dfrac{-5\pm \sqrt{25-4\cdot 2 \cdot (-12)} } {2\cdot 2} \\\\ x &=& \dfrac{-5\pm \sqrt{121} } {4} \\\\ x &=& \dfrac{-5\pm 11 } {4} \\\\ x_2 &=& \dfrac{-5+ 11 } {4} \\ \mathbf{x_2} & \mathbf{=}& \mathbf{ \dfrac32 } \\\\ x_3 &=& \dfrac{-5- 11 } {4} \\ \mathbf{x_3} & \mathbf{=}& \mathbf{ -4 } \\ \hline \end{array}\)

 

The x-intercepts of the graph of f(x) are \(0,\dfrac32, -4\)

 

 

laugh

 Dec 7, 2018
 #9
avatar+701 
0

Thanks!

 #10
avatar+701 
0

I see where I messed up... I though 12/2 = 12! 


6 Online Users

avatar