+0  
 
+14
396
1
avatar+483 

A polynomial product of the form\((1 - z)^{b_1} (1 - z^2)^{b_2} (1 - z^3)^{b_3} (1 - z^4)^{b_4} (1 - z^5)^{b_5} \dotsm (1 - z^{32})^{b_{32}},\)where the \(b_k\) are positive integers, has the surprising property that if we multiply it out and discard all terms involving \(z\) to a power larger than 32, what is left is just \(1-2z\). Determine 
\(b_{32}\).
You can enter your answer using exponential notation.

 

Any help would be greatly appreciated laugh

 Nov 28, 2021
 #1
avatar
0

b_{32} is equal to 8874810

 Jan 9, 2022

2 Online Users

avatar