Polynomials
Find a, b and the other factor
\(\text{factor } (x+1) \Rightarrow \text{let } x_1 = -1 \\ \text{factor } (x+2) \Rightarrow \text{let } x_2 = -2\)
Vieta's formulas:
\(\begin{array}{|rcll|} \hline -8 &=& -(x_1x_2x_3) \\ 8 &=& x_1x_2x_3 \\ 8 &=& (-1)(-2)x_3 \\ 8 &=& 2x_3 \\ \mathbf{x_3} &\mathbf{=}& \mathbf{4} \\ x_3 = 4 \Rightarrow \text{factor } (x-4) \\ \hline \end{array} \)
\(\begin{array}{|rcll|} \hline -a &=& -(x_1+x_2+x_3) \\ &=& (-1)+(-2)+4 \\ &=& -3+4 \\ \mathbf{a} &\mathbf{=}& \mathbf{1} \\ \hline \end{array}\)
\(\begin{array}{|rcll|} \hline -b &=& x_1x_2+x_1x_3+x_2x_3 \\ b &=& -(x_1x_2+x_1x_3+x_2x_3) \\ &=& -\Big((-1)(-2)+(-1)4+(-2)4)\Big) \\ &=& - (2-4-8) \\ &=& - (2-12) \\ &=& - (-10) \\ \mathbf{b} &\mathbf{=}& \mathbf{10} \\ \hline \end{array}\)
Thanks, heureka....here's one other way
Let the polynomial be a(x + 1)(x + 2)(x - q)
Where q is the unknown root
Since the lead coefficient is 1, a = 1
So. expanding this, we have
(x^2 + 3x + 2)(x - q ) = x^3 + 3x^2 + 2x - qx^2 - 3qx - 2q
Equating coefficients, we have
(3 - q) = -a
(2 -3q) = -b
-2q = -8 ⇒ q = 4 = the unknown root
So
(3 - 4) = -a ⇒ -1 = -a ⇒ 1 = a
( 2 - 3(2) ) = -b ⇒ -10 = -b ⇒ 10 = b