+0  
 
0
419
3
avatar

 

 

 

Find a, b and the other factor

Guest Nov 8, 2017
 #1
avatar+92785 
+2

 

Since the first term is x^3  and the last term  is  -8....

The other factor must be (x - 4)

 

So....let's expand this

 

(x + 1) (x + 2) (x - 4)  =   x^3 - x^2 - 10 x - 8

 

So  a  = 1    and b  =  10

 

 

cool cool cool

CPhill  Nov 8, 2017
edited by CPhill  Nov 8, 2017
edited by CPhill  Nov 8, 2017
 #2
avatar+20680 
+2

Polynomials

Find a, b and the other factor


\(\text{factor } (x+1) \Rightarrow \text{let } x_1 = -1 \\ \text{factor } (x+2) \Rightarrow \text{let } x_2 = -2\)

 

Vieta's formulas:

\(\begin{array}{|rcll|} \hline -8 &=& -(x_1x_2x_3) \\ 8 &=& x_1x_2x_3 \\ 8 &=& (-1)(-2)x_3 \\ 8 &=& 2x_3 \\ \mathbf{x_3} &\mathbf{=}& \mathbf{4} \\ x_3 = 4 \Rightarrow \text{factor } (x-4) \\ \hline \end{array} \)

 

\(\begin{array}{|rcll|} \hline -a &=& -(x_1+x_2+x_3) \\ &=& (-1)+(-2)+4 \\ &=& -3+4 \\ \mathbf{a} &\mathbf{=}& \mathbf{1} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline -b &=& x_1x_2+x_1x_3+x_2x_3 \\ b &=& -(x_1x_2+x_1x_3+x_2x_3) \\ &=& -\Big((-1)(-2)+(-1)4+(-2)4)\Big) \\ &=& - (2-4-8) \\ &=& - (2-12) \\ &=& - (-10) \\ \mathbf{b} &\mathbf{=}& \mathbf{10} \\ \hline \end{array}\)

 

laugh

heureka  Nov 8, 2017
 #3
avatar+92785 
+2

Thanks, heureka....here's one other way

 

Let the polynomial  be   a(x + 1)(x + 2)(x - q)

 

Where q is the unknown root

 

Since the lead coefficient is 1, a = 1

 

So. expanding this, we have

 

(x^2 + 3x + 2)(x - q )  =   x^3 + 3x^2 + 2x - qx^2 - 3qx - 2q

 

Equating coefficients, we have

 

(3 - q) = -a

(2 -3q)  = -b

-2q  = -8   ⇒   q  = 4   = the unknown root

 

So   

(3 - 4)  =  -a   ⇒  -1  = -a  ⇒  1  =  a

( 2 - 3(2) )  =  -b  ⇒  -10  = -b  ⇒  10 =  b

 

 

cool cool cool

CPhill  Nov 8, 2017

6 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.