We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
64
1
avatar+166 

Let \(a\) and \(b\) be nonnegative real numbers such that \(a^2 + b^2 = 1\) Find the set of all possible values of \(a+b\)

 Aug 3, 2019
 #1
avatar+5798 
+1

\(\text{We can let $a=\cos(x),~b=\sin(x)$}\\ r (x)= \cos(x)+\sin(x)\\ \dfrac{dr}{dx} = -\sin(x)+\cos(x)\\ \dfrac{dr}{dx} =0 \Rightarrow x = \dfrac{\pi}{4}, ~\dfrac{5\pi}{4}\\ \dfrac{d^2r}{dx^2} = -\cos(x)-\sin(x)\\ \left. \dfrac{d^2r}{dx^2}\right|_{x=\frac \pi 4} <0 \text{ so this is the maxima}\\ \left. \dfrac{d^2r}{dx^2}\right|_{x=\frac {5\pi} 4} >0 \text{ so this is the minima}\\ r\left(\frac \pi 4\right) = \sqrt{2}\\ r\left(\frac{5\pi}{4}\right) = -\sqrt{2}\\ \text{and we get that $a+b \in [-\sqrt{2},\sqrt{2}]$} \)

.
 Aug 3, 2019

10 Online Users

avatar