Let f(x)= 18/3+ae^kx with f(0)=3 and f(1)=1/2
Find a, k and evauate function f(2)
value of a=????
value of k=????
f(2)=????
f(x) = 18 / [ 3 + ae^(kx) ]
f(0) = 3 means that
3 = 18 / [ 3 + ae^(k*0) ] { note that e^(k*0) = 1 }
3 = 18 / [ 3 + a] cross -multiply
3 [ 3 + a] = 18 divide both sides by 3
3 + a = 6
a = 3
f(1) = 1/2
1/2 = 18 / [ 3 + 3e^(k * 1) ]
1/2 = 18 / [ 3 + 3e^k ]
cross-mutiply
(1/2) [ 3 + 3e^k] = 18 multiply through by 2
3 + 3e^k = 36 subtract 3 from both sides
3e^k = 33 divide through by 3
e^k = 11 tae the Ln of both sides
ln e^k = Ln 11 and we can write
k * Ln e = Ln 11 Ln e =1 so we can ignore this
k = Ln 11
f(2) = 18 / [ 3 + 3e^[ (Ln 11) *2 ] ]
Note that we can use a "trick" here
e ^[ (Ln 11) * 2 ] = e ^(2 * Ln 11 ) = e ^( Ln 11^2) = e ^( Ln 121) = 121
So
f(2) = 18 / [ 3 + 3 * 121] = 18 / [3 ( 1 + 121) ] = 6 / 122 = 3 /61 [exact value ]