Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
+1
666
3
avatar+226 

 

Let z and w be complex numbers satisfying |z|=5,  |w|=2 and z¯w=6+8i. Find in the numbers |z+w|2,|zw|2,|zw|2,|zw|2

 Aug 7, 2020
edited by littlemixfan  Aug 7, 2020
 #1
avatar+118703 
0

I really do not know what I am doing here. (I have forgotten it)

 

However.

|z|=5soz=5eθi|w|=2sow=2eαi|ˉw|=2soˉw=2eαi zw=5eθi2eαi=10e(θ+α)i|zw|2=100|zw|2=254=6.25 zˉw=5eθi2eαi=10e(θα)i=6+8iθα=atan(86)=atan(1.˙3)zˉw=6+8i=10e(atan(1.˙3))i

 

 I think that is right as far as it goes but it does not answer all your questions.

 

 

 

 

LaTex:

|z|=5\;\;\quad so\;\; \qquad z=5e^{\theta i}\\
|w|=2\;\;\quad so\;\; \qquad w=2e^{\alpha i}\\
|\bar w|=2\;\;\quad so\;\; \qquad \bar w=2e^{-\alpha i}\\~\\
zw=5e^{\theta i}*2e^{\alpha i}=10e^{(\theta+\alpha)i}\\
|zw|^2=100\\
\left| \frac{z}{w} \right|^2=\frac{25}{4}=6.25\\~\\
z\bar w=5e^{\theta i}*2e^{-\alpha i}=10e^{(\theta-\alpha)i}=6+8i\\
\theta-\alpha=atan(\frac{8}{6})=atan(1.\dot3)\\
z\bar w=6+8i=10e^{(atan(1.\dot 3))i}

 Aug 8, 2020
 #2
avatar+33654 
+3

Here's a starter:

 

See if you can take it from here.

 Aug 8, 2020
 #3
avatar+118703 
0

Thanks Alan,

Melody  Aug 8, 2020

1 Online Users

avatar