+0  
 
+5
111
2
avatar

sin\left(cos^{-1}\left(\frac{x^2}{4-x^2}\right)\right)

Guest Mar 9, 2017
 #1
avatar
0

Am I reading it right?

sin(cos^(-1)(x^2/(4 - x^2)))

 

Solve for x:
sqrt(1 - x^4/(4 - x^2)^2) = 0

Square both sides:
1 - x^4/(4 - x^2)^2 = 0

Bring 1 - x^4/(4 - x^2)^2 together using the common denominator (x^2 - 4)^2:
-(8 (x^2 - 2))/(x^2 - 4)^2 = 0

Divide both sides by -8:
(x^2 - 2)/(x^2 - 4)^2 = 0

Multiply both sides by (x^2 - 4)^2:
x^2 - 2 = 0

Add 2 to both sides:
x^2 = 2

Take the square root of both sides:
Answer: |x = sqrt(2)         or          x = -sqrt(2)

Guest Mar 9, 2017
 #2
avatar+86890 
0

\(sin\left(cos^{-1}\left(\frac{x^2}{4-x^2}\right)\right)\)

 

We are looking for the sin of an angle (theta) with a cosine of   x^2 / ( 4 - x^2).....so we have...

 

sin (theta)   =  √ [ 1 - cos^2 (theta) ] =  [ 1 - [ (x^2)/(4-x^2)]^2 ] =  √ [x^4 - 8x^2 + 16 - x^4] / (4 - x^2)   =

 

√ {16 - 8x^2) / (4- x^2)    =  √ [ 4 (4 - 2x^2) ] / (4 - x^2)   =  2√(4 - 2x^2) / (4 - x^2)

 

 

cool cool cool

CPhill  Mar 9, 2017

19 Online Users

avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.