+0  
 
+1
661
2
avatar+84 

Tell whether the statement is true or false. If​ false, tell why.

The tangent and secant functions are undefined for the same values.

Choose the correct answer below.

 

A.True.

 

B.False. Tangent values are undefined when

x=(2n+1)π2​,

while secant values are undefined when

x=nπ.

 

C.False. Tangent values are undefined when

x=nπ​, while secant values are undefined when

x=(2n+1)π2.

 

D. False. Tangent values are undefined when

x=2nπ​,

while secant values are undefined when

x=(2n+1)π2.

 May 11, 2021
 #1
avatar+37146 
+1

Remember     tan = sin / cos      secant =   1 / cos     

    Both are undefined for values that make the denominator = o       Sooooo-o-o    what do you think?

 May 11, 2021
 #2
avatar+90 
0

Answer:

TRUE

Step-by-step explanation:

tanθ = 1/cotθ

cotθ = 0 when θ = ±(1/2)π, ±(3/2)π, … ±[(2n+1)/2]π.

∴ tanθ is undefined when θ = ±[(2n+1)/2]π.

secθ = 1/cosθ

cosθ = 0 when θ = ±(1/2)π, ±(3/2)π, , …, ±[(2n+1)/2]π.

∴ secθ is undefined when θ = ±[(2n+1)/2]π.

The tangent and secant functions are undefined for the same values of θ.

 May 11, 2021

2 Online Users