+0

# PRECAL

+1
348
2

Tell whether the statement is true or false. If​ false, tell why.

The tangent and secant functions are undefined for the same values.

A.True.

B.False. Tangent values are undefined when

x=(2n+1)π2​,

while secant values are undefined when

x=nπ.

C.False. Tangent values are undefined when

x=nπ​, while secant values are undefined when

x=(2n+1)π2.

D. False. Tangent values are undefined when

x=2nπ​,

while secant values are undefined when

x=(2n+1)π2.

May 11, 2021

#1
+1

Remember     tan = sin / cos      secant =   1 / cos

Both are undefined for values that make the denominator = o       Sooooo-o-o    what do you think?

May 11, 2021
#2
0

TRUE

Step-by-step explanation:

tanθ = 1/cotθ

cotθ = 0 when θ = ±(1/2)π, ±(3/2)π, … ±[(2n+1)/2]π.

∴ tanθ is undefined when θ = ±[(2n+1)/2]π.

secθ = 1/cosθ

cosθ = 0 when θ = ±(1/2)π, ±(3/2)π, , …, ±[(2n+1)/2]π.

∴ secθ is undefined when θ = ±[(2n+1)/2]π.

The tangent and secant functions are undefined for the same values of θ.

May 11, 2021