Tell whether the statement is true or false. If false, tell why.
The tangent and secant functions are undefined for the same values.
Choose the correct answer below.
A.True.
B.False. Tangent values are undefined when
x=(2n+1)π2,
while secant values are undefined when
x=nπ.
C.False. Tangent values are undefined when
x=nπ, while secant values are undefined when
x=(2n+1)π2.
D. False. Tangent values are undefined when
x=2nπ,
while secant values are undefined when
x=(2n+1)π2.
Remember tan = sin / cos secant = 1 / cos
Both are undefined for values that make the denominator = o Sooooo-o-o what do you think?
Answer:
TRUE
Step-by-step explanation:
tanθ = 1/cotθ
cotθ = 0 when θ = ±(1/2)π, ±(3/2)π, … ±[(2n+1)/2]π.
∴ tanθ is undefined when θ = ±[(2n+1)/2]π.
secθ = 1/cosθ
cosθ = 0 when θ = ±(1/2)π, ±(3/2)π, , …, ±[(2n+1)/2]π.
∴ secθ is undefined when θ = ±[(2n+1)/2]π.
The tangent and secant functions are undefined for the same values of θ.