Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
26
1
avatar+68 

Given a square matrix $\mathbf{A}$, the characteristic polynomial of $\mathbf{A}$ is defined as PA(t)=det(tIA),

where $\mathbf{I}$ is the identity matrix. For example, if $\mathbf{A} = (1234),$ then the characteristic polynomial of$\mathbf{A}$  is PA(t)=det(tIA)=det(t(1001)(1234)), and rewriting the difference as a single matrix, this becomes det(t123t4)=(t1)(t4)(2)(3)=t25t2.

 

(a) Compute the characteristic polynomial of the matrix A=(abcd).

 

Express your answer in the form $p_2 t^2 + p_1 t + p_0$.

 

(b) For the polynomial in part (a), find p2A2+p1A+p0I.

 Jun 11, 2024

2 Online Users