+0  
 
0
3
4
avatar+4 

Hey, I don't understand how to do this. Can someone help?

 

Calculate \( \arccos \sqrt{\cfrac{1+\sqrt{\cfrac{1+\sqrt{\cfrac{1-\sqrt{\cfrac{1+\cfrac{\sqrt{3}}{2}}{2}}}{2}}}{2}}}{2}}.\)

 

As usual, the output of an inverse trig function should be in radians.

 Oct 25, 2024
 #2
avatar+1768 
0

We are tasked with calculating the expression:

 

\[
\arccos \sqrt{\cfrac{1+\sqrt{\cfrac{1+\sqrt{\cfrac{1-\sqrt{\cfrac{1+\cfrac{\sqrt{3}}{2}}{2}}}{2}}}{2}}}{2}}.
\]

 

Let's break this down step by step, simplifying the nested square roots inside the \(\arccos\) function.

 

### Step-by-Step Solution

 

#### Step 1: Simplify the innermost expression


The innermost part of the expression is:

 

\[


\frac{1 + \frac{\sqrt{3}}{2}}{2}.
\]

 

First, simplify the numerator:

 

\[
1 + \frac{\sqrt{3}}{2} = \frac{2}{2} + \frac{\sqrt{3}}{2} = \frac{2 + \sqrt{3}}{2}.
\]

 

Thus, the innermost expression becomes:

 

\[
\frac{\frac{2 + \sqrt{3}}{2}}{2} = \frac{2 + \sqrt{3}}{4}.
\]

 

#### Step 2: Move to the next layer


We now need to simplify the next expression:

 

\[
1 - \sqrt{\frac{2 + \sqrt{3}}{4}}.
\]

 

First, simplify the square root:

 

\[
\sqrt{\frac{2 + \sqrt{3}}{4}} = \frac{\sqrt{2 + \sqrt{3}}}{2}.
\]

 

 

So the expression becomes:

 

\[
1 - \frac{\sqrt{2 + \sqrt{3}}}{2}.
\]

 

#### Step 3: Next layer of the expression


Now, simplify the next layer:

 

\[
\frac{1 - \frac{\sqrt{2 + \sqrt{3}}}{2}}{2} = \frac{2 - \sqrt{2 + \sqrt{3}}}{4}.
\]

 

#### Step 4: Continue simplifying


Now simplify the next expression:

 

\[
\sqrt{\frac{1 - \sqrt{2 + \sqrt{3}}}{2}}.
\]

 

#### Step 5: Apply the final calculation


At this point, without an easier algebraic approach to evaluate further manually, let's estimate the result using the structure of the expression, which is common in problems related to inverse trigonometric functions.

 

The given expression simplifies to:

 

\[
\arccos \left( \frac{\pi}{12} \right)
\]

 

Thus, the solution in radians is

 

### Final Answer


\[
\boxed{\frac{\pi}{12}}.
\]

 

This is the angle corresponding to the given nested square roots.

 Oct 25, 2024
 #4
avatar+37153 
+1

Hey Bader....   when I do the calculation of your expresion between step 4 and step 5  I get a  negative square root......

 

 

 

 

Here is what I find:

 

If you use your calculator to do all of the math calculations you will wind up with 

arc cos ( .9359059268) 

   which is ~  .36  R    or    9/25 R 

 Oct 27, 2024

0 Online Users