+0  
 
0
115
1
avatar

Prove that there are infinite primes

Guest Jun 5, 2018
 #1
avatar+970 
+1

Euclid's proof:

 

Suppose that \(p_1=2 < p_2 = 3 < ... < p_r\) are all of the primes. Let \(P = p_1\cdotp_2...pr+1\) and let p be a prime dividing P;

 

then p can not be any of \(p_1, p_2, ..., p_r,\) otherwise p would divide the difference \(P-p_1p_2...p_r=1\), which is impossible.

 

So this prime p is still another prime, and \(p_1, p_2, ..., pr\) would not be all of the primes.


laughlaughlaugh

GYanggg  Jun 5, 2018

21 Online Users

avatar
avatar
avatar
avatar
avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.