Meyer rolls two fair, ordinary dice with the numbers 1, 2, 3, 4, 5, 6 on their sides. What is the probability that both of the dice shows a square number?
Possible rolls
1 + 1 = 2
4 + 4 = 8
We have 36 possible outcomes
P(2) = 1/36
P(8) = 5/36
Total Probability = 1/36 + 5/36 = 6/36 = 1/6
Chris, I believe that one of us has misread the question:
What is the probability that both of the dice shows a square number?
I could multiply the probabilities, but I believe a visual would be more explanatory to the OP guest.
Here are the possible rolls, with the rolls that solve the problem highlighted.
1,1 1,2 1,3 1,4 1,5 1,6
2,1 2,2 2,3 2,4 2,5 2,6
3,1 3,2 3,3 3,4 3,5 3,6
4,1 4,2 4,3 4,4 4,5 4,6
5,1 5,2 5,3 5,4 5,5 5,6
6,1 6,2 6,3 6,4 6,5 6,6
The probability is shown to be 4/36 = 1/9.