We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website.
Please click on "Accept cookies" if you agree to the setting of cookies. Cookies that do not require consent remain unaffected by this, see
cookie policy and privacy policy.
DECLINE COOKIES

1. It is known that a fair coin is flipped 10 times. Given that the coin landed heads up at least 3 times, what is the odds that it landed heads up 7 times?

2. Given that the members of set M are all the positive factors of 25 and the members of set D are all the positive factors of 20, what is the odds that a number from set M is also in set D?

hellospeedmind Feb 17, 2019

#1**+1 **

\(\text{# of heads out of 10 is binomially distributed }n=10, ~p=\dfrac 1 2\\ A \sim \{\text{7 heads}\}\\ B \sim \{\text{at least 3 heads}\}\\ P[A|B] = \dfrac{P[B|A]P[A]}{P[B]} \)

\(P[B|A] = 1\\ P[A]=\dbinom{10}{7} 2^{-10} = \dfrac{15}{128}\\ P[B] = 1-\left(\sum \limits_{k=0}^2~\dbinom{10}{k}2^{-10}\right) = \dfrac{121}{128}\)

\(P[A|B] = \dfrac{1 \cdot \frac{15}{128}}{\frac{121}{128}} = \dfrac{15}{121}\)

\(\text{odds} = \dfrac{P[A|B]}{1-P[A|B]} = \dfrac{15}{121-15} = \dfrac{15}{106}\)

.Rom Feb 17, 2019