+0

# Problem:

+1
845
1

Problem:

In the diagram below, points A,E  and F lie on the same line. If ABCDE is a regular pentagon, and angle EFD=90 degrees, then how many degrees are in the measure of FDE? Aug 1, 2017

#1
+3

∠DEF  is an exterior angle of pentagon ABCDE.

The sum of all exterior angles in a polygon  =  360º

Since ABCDE is a regular pentagon, all 5 of its exterior angles have the same measure.

So..the measure of one exterior angle  =  360° / 5  =  72°

m∠DEF  =  72°

Since there are 180° in every triangle...

m∠DEF + m∠EFD + m∠FDE  =  180°

72°    +    90°    + m∠FDE  =  180°                Subtract  72°  and  90°  from both sides.

m∠FDE  =  18°

Aug 2, 2017

#1
+3

∠DEF  is an exterior angle of pentagon ABCDE.

The sum of all exterior angles in a polygon  =  360º

Since ABCDE is a regular pentagon, all 5 of its exterior angles have the same measure.

So..the measure of one exterior angle  =  360° / 5  =  72°

m∠DEF  =  72°

Since there are 180° in every triangle...

m∠DEF + m∠EFD + m∠FDE  =  180°

72°    +    90°    + m∠FDE  =  180°                Subtract  72°  and  90°  from both sides.

m∠FDE  =  18°

hectictar Aug 2, 2017