+0  
 
0
728
8
avatar

how to calculate y = 9 - x ^ 2 interval [0, 2 ] I want to know solid volume by rotating 360 degrees around the x axis

 Feb 5, 2016
edited by Guest  Feb 5, 2016
edited by Guest  Feb 5, 2016

Best Answer 

 #6
avatar+129849 
+5

We are using the ring ["washer"]  method........see the explanation, here....

 

http://tutorial.math.lamar.edu/Classes/CalcI/VolumeWithRings.aspx

 

[Example 1 is very similar to this one]

 

 

cool cool cool

 Feb 5, 2016
 #1
avatar+407 
0

no se pregunta a tu marista 

 Feb 5, 2016
 #2
avatar+45 
0

You should ignore what that person said because he/she said do not ask your Marist

 Feb 5, 2016
 #3
avatar+129849 
+5

    2

pi  ∫  ( 9 - x^2)^2  dx   =

    0

 

    2

pi  ∫   [ 81  - 18x^2  + x^4]  dx  = 

    0

                                      2                           

pi * [81x - 6x^3 + x^5/5]  

                                     0

 

pi *[ 81(2) - 6(2)^3 + (2)^5/5 ]  =

 

pi *[162 - 48 + 32/5]  =

 

pi *[114 + 32/5\  =

 

pi* [570/5 + 32/5]  =

 

pi *[602/5] ≈  378.25 cu units

 

 

cool cool cool

 Feb 5, 2016
edited by CPhill  Feb 6, 2016
 #4
avatar
0

I THINK it is      Integral (0-2pi) Integral(0-2) 9-x^2        I think!    30 2/3 pi       Yikes....that is a wild guess.  Let me know when soemeone is able to ACTUALLY answer it .....

 Feb 5, 2016
 #5
avatar
+5

Hey CPhill.....   it says   9-x^2     Where did you get   (9-x^2)^2      Hmmmmm....

 Feb 5, 2016
 #6
avatar+129849 
+5
Best Answer

We are using the ring ["washer"]  method........see the explanation, here....

 

http://tutorial.math.lamar.edu/Classes/CalcI/VolumeWithRings.aspx

 

[Example 1 is very similar to this one]

 

 

cool cool cool

CPhill Feb 5, 2016
 #7
avatar
+5

Got it...    Thanks,  Chris

 Feb 5, 2016
 #8
avatar
0

Compute the definite integral: integral_0^2 pi (9-x^2)^2 dx Factor out constants: = pi integral_0^2 (9-x^2)^2 dx Expanding the integrand (9-x^2)^2 gives x^4-18 x^2+81: = pi integral_0^2 (x^4-18 x^2+81) dx Integrate the sum term by term and factor out constants: = pi integral_0^2 x^4 dx+-18 pi integral_0^2 x^2 dx+81 pi integral_0^2 1 dx Apply the fundamental theorem of calculus. The antiderivative of x^4 is x^5/5: = (pi x^5)/5|_0^2+-18 pi integral_0^2 x^2 dx+81 pi integral_0^2 1 dx Evaluate the antiderivative at the limits and subtract. (pi x^5)/5|_0^2 = (pi 2^5)/5-(pi 0^5)/5 = (32 pi)/5: = (32 pi)/5+-18 pi integral_0^2 x^2 dx+81 pi integral_0^2 1 dx Apply the fundamental theorem of calculus. The antiderivative of x^2 is x^3/3: = (32 pi)/5+(-6 pi x^3)|_0^2+81 pi integral_0^2 1 dx Evaluate the antiderivative at the limits and subtract. (-6 pi x^3)|_0^2 = (-6 pi 2^3)-(-6 pi 0^3) = -48 pi: = -(208 pi)/5+81 pi integral_0^2 1 dx Apply the fundamental theorem of calculus. The antiderivative of 1 is x: = -(208 pi)/5+81 pi x|_0^2 Evaluate the antiderivative at the limits and subtract. 81 pi x|_0^2 = 81 pi 2-81 pi 0 = 162 pi: Answer: | | = (602 pi)/5 =~378.25

 Feb 5, 2016

3 Online Users

avatar