+0  
 
0
31
1
avatar

Determine the value of the infinite product

\((2^{1/3})(2^{1/9})(2^{1/27}) \dotsm\)

 

  Enter your answer in the form "\sqrt[a]{b}"

 May 5, 2022

Best Answer 

 #1
avatar+23183 
+1

When multiplying numbers with the same base, add their exponents.

 

To add  1/3  +  1/9  +  1/27  +  ...

 

note that it is an infinite geometric sequence whose sum is:  Sum  =  a / (1 - r)

where   a  =  1/3     < the initial term >

and       r  =   1/3    < the common ration >             so:            Sum  =  (1/3) / [ 1 - (1/3) ]

                                                                                                Sum  =  (1/3) / (2/3)

                                                                                                Sum  =  1/2

 

So:  the product  =  21/2  =  sqrt(2)

 May 5, 2022
 #1
avatar+23183 
+1
Best Answer

When multiplying numbers with the same base, add their exponents.

 

To add  1/3  +  1/9  +  1/27  +  ...

 

note that it is an infinite geometric sequence whose sum is:  Sum  =  a / (1 - r)

where   a  =  1/3     < the initial term >

and       r  =   1/3    < the common ration >             so:            Sum  =  (1/3) / [ 1 - (1/3) ]

                                                                                                Sum  =  (1/3) / (2/3)

                                                                                                Sum  =  1/2

 

So:  the product  =  21/2  =  sqrt(2)

geno3141 May 5, 2022

8 Online Users