+0  
 
0
37
2
avatar+454 

i got stuck after solving up to 7(7^k * 7 -1) 

please help, thanks

YEEEEEET  Nov 27, 2018
 #1
avatar+3178 
+1

\(P_1 : 7(7^1 - 1) = 7\cdot 6 = 42 \text{ is divisible by }42 \text{ so }P_1 \text{ is True}\\ \text{assume }P_n \text{ is True, and prove }P_{n+1} \text{ is True}\\ 7(7^{n+1}-1) = 7(7^n\cdot 7 - 1) = \\ 7(7^n\cdot 7-7+6) = 7\cdot 7(7^n - 1) + 42 \\ \text{we assume }7(7^n -1) \text{ is divisible by 42 i.e. = }42k \text{ for some }k \in \mathbb{N}\\ 7\cdot 7(7^n - 1) + 42 = 7\cdot 42k+42 = 42(7k+1) \\ \text{thus }7(7^{n+1}-1) \text{ is divisible by }42 \text{ and }P_{n+1} \text{ is True. QED}\)

Rom  Nov 27, 2018
 #2
avatar+92641 
+2

Show that is is true for  n = 1

 

7 (71 - 1)  = 7 (6) = 42      so...true !!!!

 

Assume it is true for n = k

That is :

7(7k - 1)   is divisible by 42

 

Note that we can write this as 

 

(7* 7k - 7)  

 

 

 

Prove it is true for n = k + 1

 

7(7k+ 1 - 1)  =

 

7 ( 7 * 7k - ( 7 - 6) ) =

 

7 (  [7 * 7k - 7 ] + 6 ) =

 

7 ( 7 * 7k - 7)  + 7*6

 

Note that the first term is divisible by 42 since ( 7 * 7k - 7) was assumed to be divisible by 42

And 7*6 is clearly divisible by 42

 

So ...   7(7k+ 1 - 1) is divisible by 42

 

 

cool cool cool

CPhill  Nov 27, 2018

35 Online Users

avatar
avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.